Skip to main content
Log in

Rheological evaluation of pg 64–22 asphalt binder modified with lignin of pinus and eucalyptus woods

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Lignin is a natural polymer and the second-most abundant material in the plant kingdom containing antioxidant properties. Research using lignin asphalt binder modifications aims to improve asphalt mixture properties, enhance aging resistance, reduce rutting, and extend fatigue lifespan. This research aims to study PG 64–22 binders with two lignin modifications, Pinus and Eucalyptus, in differing amounts. Rheological properties were studied and Fourier-transform infrared spectroscopy analysis tests for discovering chemical composition were performed. The results indicate the viability of modification by incorporating lignin into asphalt binders based on factors such as fatigue lifespan, rutting resistance, and a delayed short-term aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmedzade P, Yilmaz M (2008) Effect of polyester resin additive on the properties of asphalt binders and mixtures. Constr Build Mater 22:481–486

    Article  Google Scholar 

  2. AL-Mansob RA, Ismail A, Yusoff NIM, Albrka SI, Azhari CH, Karim MR (2016) Rheological characteristics of unaged and aged epoxidised natural rubber modified asphalt. Constr Build Mater 102:190–199

    Article  Google Scholar 

  3. American association of state highway and transportation officals (2010) – AASHTO M 320: Standard specification for performance-graded Asphalt Binder. Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing. Washington, DC.

  4. American association of state highway and transportation Officals (2012) - AASHTO TP 101: Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. Washington, DC.

  5. American society for testing materials (2015) – ASTM D 4402 15: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. West Conshohocken, PA.

  6. American society for testing materials (2015) – ASTM D 7405 15: Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. West Conshohocken, PA.

  7. American society for testing materials (2016) - ASTM D6373 16: Standard Specification for Performance Graded Asphalt Binder. West Conshohocken, PA.

  8. American society for testing materials (2016) – ASTM E 168 16: Standard Practices for General Techniques of Infrared Quantitative Analysis. West Conshohocken, PA.

  9. Arafat S, Kumar N, Wasiuddin NM, Owhe EO, Lynam JG (2019) Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties. J Clear Prod 217:456–468

    Article  Google Scholar 

  10. Azafar M (2015) Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol. Int J Biol Macromol 75:58–66

    Article  Google Scholar 

  11. Batista KB, Padilha RPL, Castro TO, Silva CFSC, Araújo MFAS, Leite LFM, Pasa VMD, Lins VFC (2018) High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind Crops Prod 111:107–116

    Article  Google Scholar 

  12. Boomika A. Naveen MA, Daniel Richard J, Mythili A, Vetturayasudharsanan R (2017) Experimental study on partial replacement of bitumen with lignin and plastic. SSRG International Journals Civil Engineering Special Issue, p. 9–14.

  13. Brovelli C, Crispino M, Pais J, Pereira P (2015) Using polymers to improve the rutting resistance of asphalt concrete. Constr Build Mater 77:117–123

    Article  Google Scholar 

  14. Chang I, IM J, CHO, GC (2016) Introduction of microbial biopolymers in soil treatment for future environmentally - friendly and sustainable geotechnical engineering. Sustainability 8(3):251

    Article  Google Scholar 

  15. Chavez Sifontes M, Domine ME (2013) Lignin, structure and applications: depolymerization methods for obtaining aromatic derivatives of industrial interest. Avances en Ciencias e Ingeniería 4(4):15–46

    Google Scholar 

  16. Cortizo MS, Larsen DO, Bianchetto H, Alessandrini JL (2004) Effect of the thermal degradation of SBS copolymers during the aging of modified asphalts. Polym Degrad Stab 86:275–282

    Article  Google Scholar 

  17. Gama DA, Yan Y, Rodrigues JKG, Roque R (2018) Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethilene to achieve asphalt binders with superior performance. Constr Build Mater 169:522–529

    Article  Google Scholar 

  18. Gómez-Fernández S, Ugarte L, Calvo Correas T, Peña-Rodríguez C, Corcuera MA, Eceiza A (2017) Properties of flexible polyurethane foams containing isocyanate functionalized kraft lignin. Ind Crops Prod 100:51–64

    Article  Google Scholar 

  19. Hintz C (2012) Understanding mechanics leadind to asphalt binder fatigue. Dissertation. University of Wisconnsin-Madison

  20. Hernández N, Williams RC, Cochran EW (2014) The battle for the “green” polymer Different approaches for biopolymer synthesis: bioadvantaged vs bioreplacement. Organic Biomol Chem 12(18):2834–2845

    Article  Google Scholar 

  21. Jafari M, Babazadeh A (2016) Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep test. Road Mater Pavement Design 17(4):859–876

    Article  Google Scholar 

  22. JassO M, Hampl R, Vacin O, Bakos D, Stastna J, Zanzotto L (2015) Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid. Fuel Process Technol 140:172–179

    Article  Google Scholar 

  23. Kodrat I, Sohn D, Hesp S (2007) Comparison of Polyphosphoric Acid– Modified Asphalt Binders with Straight and Polymer-Modified Materials. Trans Res Board 1998:47–55

    Article  Google Scholar 

  24. Kühnel I, Saake B, Lehnen R (2017) Oxyalkylation of lignin with propylene carbonate: influence of reaction parameters on the ensuing bio-based polyols. Ind Crops Prod 101:75–83

    Article  Google Scholar 

  25. Li X, Ouyang C, Yuan Y, Gaoa Q, Zhenga K, Yanbet J (2015) Evaluation of ethylene-acrylic acid copolymer (EAA) modified asphalt: fundamental investigations on mechanical and rheological properties. Constr Build Mater 90:44–52

    Article  Google Scholar 

  26. Li B, Wang Y, Mahmood N, Yuan Z, Schmidt J, Xu C (2017) Preparation of biobased phenol formaldehyde foams using depolymerized hydrolysis lignin. Ind Crops Prod 97:409–416

    Article  Google Scholar 

  27. Lu X, Isacsson U (2002) Effect of aging on bitumen chemistry and rheology. Constr Build Mater 16:15–22

    Article  Google Scholar 

  28. Luo S, Cao J, McDonald AG (2017) Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind Crops Prod 97:281–291

    Article  Google Scholar 

  29. Pamplona T, Nuñez YMJ, Faxina LA (2014) Desenvolvimentos recentes em ensaios de fadiga em ligantes asfálticos. Revista Transportes 22(2237–1346):12–25

    Article  Google Scholar 

  30. Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin fromhybrid poplar as a radical scavenger: relationship between lignin structure,- extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813

    Article  Google Scholar 

  31. Pan T (2012) A first principles based chemophysical environment for studying lignins as an asphalt antioxidant. Constr Build Mater 36:654–664

    Article  Google Scholar 

  32. Polacco G, Filippi S, Merusi F, Stastna G (2015) A review of the fundamental of polymer modified asphalts: asphalt/polymer interactions and principles of compatibility. Adv Coll Interface Sci 224:72–112

    Article  Google Scholar 

  33. Qian Y, Zhong X, Li Y, Qiu X (2017) Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind Crops Prod 101:54–60

    Article  Google Scholar 

  34. Santos, N. S.; Rodrigues, J. K. G.; Mendonça, A. M. G. D. (2018) Efeito da adição de lignina Kraft proveniente da madeira de eucalipto na reologia do CAP 50/70. Matéria, v. 23, n. 3. Rio de Janeiro, RJ.

  35. Silveira, M. A. L.; Milagres, A. M. F. (2009) Obtenção Caracterização de Lignina e Madeiras. VIII Congresso Brasileiro de Engenharia Química em Iniciação Científica. Uberlândia, Minas Gerais.

  36. Singh D, Ashish PK, Kataware A, Habal A (2017) Evaluating performance of PPAand-Elvaloy-modified binder containing WMA additives and lime using MSCR and LAS tests. J Mate Civil Eng 29(8):04017064

    Article  Google Scholar 

  37. Teymourpour P, Bahia H (2014) Linear amplitude sweep test: binder grading specification and field validation. Binder Expert Task Group Meeting

  38. Van Vliet, D.; Slaghek, T.; Giezen, C.; Haaksman, I. (2016) Lignin as a green alternative for bitumen. In: Proceeding of the 6th Eurasphalt & Eurobitume Congress. Prague, Czech Republic.

  39. Wang H, Derewecki K (2013) Rheological properties of asphalt binder partially substituted with wood lignin. In: Airfield & Highway Pavement Conference. Los Angeles, California, United States

  40. Wang C, Wang Y (2019) Physico-chemo-rheological Characterization of neat and polymer-modified asphalt binders. Constr Build Mater 199:471–482

    Article  Google Scholar 

  41. Xiao FP, Amirkhanian SN, Shen JN (2009) Effects of long term aging on laboratory prepared rubberized asphalt binders. J Test Eval 37:329–336

    Google Scholar 

  42. Xie S, Li Q, Karki P, Zhou F, Yuan JS (2017) Lignin as renewable and superior asphalt binder modifier. ACS Sustain Chem. Eng 5(4):2817–2823

    Article  Google Scholar 

  43. Xu G, Wang H, Zhu H (2017) Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr Build Mater 151:801–808

    Article  Google Scholar 

  44. Yao H, You Z, Li L, Shi X, Goh SW, Mills-Beale J (2012) Performance of asphalt binder blended with non-modified and polymer-modified nanoclay. Constr Build Mater 35:159–170

    Article  Google Scholar 

  45. Yao H, You Z, Li L, Lee C, Wingard D, Yap Y (2013) Rheological properties and chemical bonding of asphalt modified with nanosilica. J Mater Civ Eng 25(11):1619–1630

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Maria Sousa Gonçalves Luz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luz, P.M.S.G., Ziegler, C.R., Mendonça, A.M.G.D. et al. Rheological evaluation of pg 64–22 asphalt binder modified with lignin of pinus and eucalyptus woods. Mater Struct 54, 166 (2021). https://doi.org/10.1617/s11527-021-01757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01757-z

Keywords

Navigation