Skip to main content
Log in

Analysis of Accurate and Stable Nonlinear Finite Volume Scheme for Anisotropic Diffusion Equations with Drift on Simplicial Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work addresses the development and analysis of a second-order accurate finite volume scheme for parabolic equations with anisotropy on general simplicial meshes. The discretization involves only vertex unknowns without processing additional ones. The scheme construction makes use of a nonlinear transformation of the linear elliptic term. Two propositions are mainly presented for the approximation of the mobility function at the interfaces. The existence of positive solutions for the discrete system is guaranteed thanks to the proved a priori estimates. The energy dissipation of the scheme is moreover ensured. The convergence of the approach is established. Numerical tests are given to show the efficiency, accuracy and robustness of the proposed approach, with respect to the anisotropy, while a particular emphasis is set on the effects of the approximate mobility. They also confirm the obtained theoretical results, especially the decay of the free energy when time grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Mathematische Zeitschrift 183(3), 311–341 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Andreianov, B., Cancès, C., Moussa, A.: A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273(12), 3633–3670 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Diff. Eq. 26(1–2), 43–100 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. SIAM J. Sci. Stat. Comput. 4(3), 416–435 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numerische Mathematik 121(4), 637–670 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bessemoulin-Chatard, M.: Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie. PhD thesis, (2012)

  7. Bessemoulin-Chatard, M., Chainais-Hillairet, C.: Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems. J. Numer. Math. 25(3), 147–168 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bogachev, V.I.: Measure theory. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Brenner, K., Masson, R.: Convergence of a vertex centred discretization of two-phase Darcy flows on general meshes. Int. J. Finite Vol. 10, 1–37 (2013)

    Google Scholar 

  10. Camier, J.-S., Hermeline, F.: A monotone nonlinear finite volume method for approximating diffusion operators on general meshes. Int. J. Numer. Methods Eng. 107(6), 496–519 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Cancès, C., Cathala, M., Le Potier, C.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numerische Mathematik 125(3), 387–417 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Cancès, C., Chainais-Hillairet, C., Krell, S.: Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations. Comput. Methods Appl. Math. 18(3), 407–432 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85(298), 549–580 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte für Mathematik 133(1), 1–82 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Chainais-Hillairet, C., Droniou, J.: Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31(1), 61–85 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Chainais-Hillairet, C., Filbet, F.: Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model. IMA J. Numer. Anal. 27(4), 689–716 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Chainais-Hillairet, C., Herda, M.: Large-time behaviour of a family of finite volume schemes for boundary-driven convection-diffusion equations. IMA J. Numer. Anal. 40(4), 2473–2504 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, vol. 17. Elsevier, North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  20. Ciarlet, P.G.: The finite element method for elliptic problems, vol. 40. SIAM, US (2002)

    MATH  Google Scholar 

  21. Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin (1985)

    MATH  Google Scholar 

  22. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math Models Methods Appl. Sci. 24(08), 1575–1619 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier, (2000)

  25. Filbet, F., Herda, M.: A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure. Numerische Mathematik 137(3), 535–577 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci. Comput. 37(1), A420–A438 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Ghilani, M., Quenjel, E.H., Saad, M.: Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media. Comput. Geosci. 23(1), 55–79 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Ghilani, M., Quenjel, E.H., Saad, M.: Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: the densities are depending on the physical pressures. J. Comput. Phys. 407, 109233 (2020)

    MathSciNet  Google Scholar 

  29. Glitzky, A.: Exponential decay of the free energy for discretized electro-reaction-diffusion systems. Nonlinearity 21(9), 1989 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.M. (eds.) Finite volumes for complex applications V, pp. 659–692. Wiley, London (2008)

    MATH  Google Scholar 

  31. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresberichte DMV 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Jüngel, A.: On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Methods Appl. Sci. 4(05), 677–703 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Jüngel, A.: Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Methods Appl. Sci. 5(04), 497–518 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Kapyrin, I.: A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes. Dokl. Math. 76, 734–738 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Le Potier, C.: Finite volume scheme satisfying maximum and minimum principles for anisotropic diffusion operators. Finite volumes for complex applications V, pp. 103–118, (2008)

  36. Li, L., Liu, J.-G.: Large time behaviors of upwind schemes and B-schemes for Fokker-Planck equations on \(\mathbb{R}\) by jump processes. Math. Comput. 89, 2283–2320 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Lin, T.-P.: The power mean and the logarithmic mean. Am. Math. Mon. 81(8), 879–883 (1974)

    MathSciNet  MATH  Google Scholar 

  38. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228(3), 703–716 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Nordbotten, J.M., Aavatsmark, I., Eigestad, G.: Monotonicity of control volume methods. Numerische Mathematik 106(2), 255–288 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Quenjel, E.H.: Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations. ESAIM Math. Model. Numer. Analy. 52(2), 591–618 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices 16(1), 64–77 (1969)

    Google Scholar 

  42. Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comput. Phys. 230(7), 2588–2604 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Houssaine Quenjel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quenjel, E.H. Analysis of Accurate and Stable Nonlinear Finite Volume Scheme for Anisotropic Diffusion Equations with Drift on Simplicial Meshes. J Sci Comput 88, 76 (2021). https://doi.org/10.1007/s10915-021-01577-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01577-x

Keywords

Navigation