Skip to main content
Log in

Nanolatex technology 1: synthesis and characterization of nanosize acrylic latexes and comparison to their conventional size counterparts

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

For this study, functional precoalescence (internally crosslinked) and postcoalescence (crosslinkable) conventional latexes were made using seeded semi-continuous emulsion polymerization. Nanosize polymer latexes with or without crosslinkable functional groups were made using a modified microemulsion copolymerization process. Films cast from conventional and nanosize latex were characterized using specific end use tests and fundamental properties using dynamic mechanical analysis, modulated differential scanning calorimetry, and atomic force microscopy. This study compares conventional and nanosize latex with respect to the effect of the type and level of crosslinking, particle size and distribution on latex film formation and morphology, and end use and fundamental properties. Nanosize latex films in general have superior gloss, solvent resistance, and adhesion but inferior water resistance. Stress–strain Young’s modulus showed an increase as a function of increasing crosslinker level in the nanosize latex films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Moser, WR, Advanced Catalysts and Nanostructured Materials: Modern Synthetic Methods. Academic Press, San Diego (1996)

    Google Scholar 

  2. Jena, P, Behera, SN, Clusters and Nanostructured Materials. Nova Science Publishers, New York (1996)

    Google Scholar 

  3. Chow, G-M, Gonsalves, KE, Nanotechnology: Molecularly Designed Materials. American Chemical Society, Washington (1996)

    Book  Google Scholar 

  4. Gref, RMY, Peracchia, MT, Trubetskoy, V, Langer, R, Torchilin, V, “Biodegradable long-Circulating Polymeric Nanospheres.” Science, 267 458 (1995)

    Google Scholar 

  5. Stupp, SILV, Walker, K, Li, LS, Huggins, KE, Kesser, M, Amstutz, A, “Supramolecular Materials: Self-Organized Nanostructures.” Science, 276 384 (1997)

    Article  CAS  Google Scholar 

  6. Kaiyi, L, Zhaoqun, W, “A Novel Method for Preparing Monodispersed Polystyrene Nanoparticles.” Front. Chem. China, 2 (1) 17–20 (2007)

    Article  Google Scholar 

  7. He, G, Pan, Q, “Synthesis of Polystyrene and Polystyrene/Poly (Methyl Methacrylate) Nanoparticles.” Macromol. Rapid Commun., 25 (17) 1545–1548 (2004)

    Article  CAS  Google Scholar 

  8. Stoffer, JO, Bone, TJ, “Polymerization in Water-in-Oil Microemulsion Systems I.” J. Polym. Sci. Polym. Chem. Ed., 18 (8) 2641–2648 (1980)

    Article  CAS  Google Scholar 

  9. Stoffer, JO, Bone, TJ, “Polymerization in Water-in-Oil Microemulsion Systems. II. SEM Investigation of Structure.” J. Dispers. Sci. Technol., 1 (4) 393–412 (1980)

    Article  CAS  Google Scholar 

  10. Atik, SS, Thomas, JK, “Polymerized Microemulsions.” J. Am. Chem. Soc., 103 (14) 4279–4280 (1981)

    Article  CAS  Google Scholar 

  11. Atik, SS, Thomas, JK, “Photochemistry in Polymerized Microemulsion Systems.” J. Am. Chem. Soc., 104 (12) 5868–5874 (1982)

    Article  CAS  Google Scholar 

  12. Atik, SS, Thomas, JK, “Photoinduced Reactions in Polymerized Microemulsions.” J. Am. Chem. Soci., 105 (14) 4515 (1983)

    Article  CAS  Google Scholar 

  13. Antonietti, M, Bremser, W, Muschenborn, D, Rosenauer, C, Schupp, B, Schmidt, M, “Synthesis and Size Control of Polystyrene Latexes via Polymerization in Microemulsion.” Macromolecules, 24 (25) 6636–6643 (1991)

    Article  CAS  Google Scholar 

  14. Candau, F, Leong, YS, Fitch, RM, “Kinetic Study of the Polymerization of Acrylamide in Inverse Microemulsion.” J. Polym. Sci. Polym. Chem. Ed., 23 (1) 193–214 (1985)

    Article  CAS  Google Scholar 

  15. Candau, F, Leong, YS, Fitch, RM, “Effect of Solution Components on the Termination Mechanism in Acrylamide Microemulsion Polymerizations.” J. Polym. Sci. Part A Polym. Chem., 27 (7) 2179–2188 (1989)

    Article  Google Scholar 

  16. Capek, I, Potisk, P, “Microemulsion Polymerization of Butyl Acrylate. IV. Effect of Emulsifier Concentration.” J. Polym. Sci. Part A Polym. Chem., 33 (10) 1675–1683 (1995)

    Article  CAS  Google Scholar 

  17. Corpart, JM, Selb, J, Candau, F, “Characterization of High Charge Density Ampholytic Copolymers Prepared by Microemulsion Polymerization.” Polymer, 34 (18) 3873–3886 (1993)

    Article  CAS  Google Scholar 

  18. Feng, L, Ng, KYS, “In Situ Kinetic Studies of Microemulsion Polymerizations of Styrene and Methyl Methacrylate by Raman Spectroscopy.” Macromolecules, 23 (4) 1048–1053 (1990)

    Article  CAS  Google Scholar 

  19. Gan, LM, Chew, CH, Lee, KC, Ng, SC, “Polymerization of Methyl Methacrylate in Ternary Oil-in-Water Microemulsions.” Polymer, 34 (14) 3064–3069 (1993)

    Article  CAS  Google Scholar 

  20. Gan, LM, Chew, CH, Lye, I, Ma, L, Li, G, “Effect of Water-Soluble Cosurfactants on Microemulsion Polymerization of Styrene.” Polymer, 34 (18) 3860–3864 (1993)

    Article  CAS  Google Scholar 

  21. Gan, LM, Chew, CH, Lee, KC, Ng, SC, “Formation of Polystyrene Nanoparticles in Ternary Cationic Microemulsions.” Polymer, 35 (12) 2659–2664 (1994)

    Article  CAS  Google Scholar 

  22. Guo, JS, Sudol, ED, Vanderhoff, JW, El-Asser, MS, “Particle Nucleation and Monomer Partitioning in Styrene Oil-in-Water Microemulsion Polymerization.” J. Polym. Sci. Part A Polym. Chem., 30 (5) 691–702 (1992)

    Article  CAS  Google Scholar 

  23. Guo, JS, Sudol, ED, Vanderhoff, JW, El-Asser, MS, “Modeling of the Styrene Microemulsion Polymerization.” J. Polym. Sci. Part A Polym. Chem., 30 (5) 703–712 (1992)

    Article  CAS  Google Scholar 

  24. Kuo, PL, Turro, NJ, Tseng, CM, El-Aasser, MS, Vanderhoff, JW, “Photoinitiated Polymerization of Styrene in Microemulsions.” Macromolecules, 20 (6) 1216–1221 (1987)

    Article  CAS  Google Scholar 

  25. Larpent, C, Tadros, TF, “Preparation of Microlatex Dispersions Using Oil-in-Water Microemulsions.” Colloid Polym. Sci., 269 (11) 1171–1183 (1991)

    Article  CAS  Google Scholar 

  26. Ming, W, Zhao, J, Lu, X, Wang, C, Fu, S, “Novel Characteristics of a Polystyrene Microsphere Prepared by Microemulsion Polymerization.” Macromolecules, 29 (24) 7678–7682 (1996)

    Article  CAS  Google Scholar 

  27. Rodriguez-G, LA, Mendizabal, E, Puig, JE, Kaler, EW, “Polymerization of Methyl Methacrylate in 3-Component Cationic Microemulsion.” J. Appl. Polym. Sci., 48 (5) 775–786 (1993)

    Article  Google Scholar 

  28. Texter, J, Oppenheimer, LE, Minter, JR, “Microemulsion Polymerization in the Water, Bis(2-Ethylhexyl) Sulfosuccinate Sodium Salt (Aerosol-OT), Tetrahydrofurfuryl Methacrylate System.” Polym. Bull. (Berl. Ger.), 27 (5) 487–494 (1992)

    Article  CAS  Google Scholar 

  29. Wu, C, “Laser Light Scattering Determination of the Surfactant Interface Thickness of Spherical Polystyrene Microlatices.” Macromolecules, 27 (24) 7099–7102 (1994)

    Article  CAS  Google Scholar 

  30. Guo, A, Liu, G, Tao, J, “Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers.” Macromolecules, 29 2487 (1996)

    Article  CAS  Google Scholar 

  31. Henselwood, FLG, “Water-Soluble Nanospheres of Poly (2-cinnamoylethyl methacryate)-block-poly(acrylic acid).” Ibid, 30 488 (1997)

    CAS  Google Scholar 

  32. Li, M, Jiang, M, Zhu, L, Wu, C, “Novel Surfactant-Free Stable Colloidal Nanoparticles Made of Randomly Carboxylated Polystyrene Ionomers.” Macromolecules, 30 2201 (1997)

    Article  CAS  Google Scholar 

  33. Okubo, MFN, Ito, A, “Effect of Molecular Weight on Preparation of Nanoparticles by Particle Dissolution Method from Sub-Micron-Sized Ionized Styrene-Methacrylic Acid Copolymer Particles in Nonionic Emulsifier.” J. Appl. Polym. Sci., 66 1461 (1997)

    Article  CAS  Google Scholar 

  34. Okubo, MSR, Fukami, N, Ito, A, “Preparation of Nanoparticles by Dissolution of Sub-Micron Ionized Styrene-Methacrylic Acid Copolymer Particles in Non-Ionic Emulsifier Solution.” Colloid Polym. Sci., 275 170 (1997)

    Article  CAS  Google Scholar 

  35. Gan, LM, Chew, CH, Lian, N, Li, GZ, “Polymerization of Styrene in a Winsor I-Like System.” Langmuir, 10 (7) 2197–2201 (1994)

    Article  CAS  Google Scholar 

  36. Loh, SE, Gan, LM, Chew, CH, Ng, SC, “Polymerization of Methyl Methacrylate in Winsor I-Like System.” J. Macromol. Sci. Pure Appl. Chem., A33 (3) 371–384 (1996)

    Article  CAS  Google Scholar 

  37. Ming, W, Jones, FN, Fu, S, “High Solids-Content Nanosize Polymer Latexes Made by Microemulsion Polymerization.” Macromol. Chem. Phys., 199 (6) 1075–1079 (1998)

    Article  CAS  Google Scholar 

  38. Ming, W, Jones, FN, Fu, S, “Synthesis of Nanosize Poly(Methyl Methacrylate) Microlatexes with High Polymer Content by a Modified Microemulsion Polymerization.” Polym. Bull., 40 (6) 749–756 (1998)

    Article  CAS  Google Scholar 

  39. Ming, W, Jones, FN, Fu, S, “High Solids-Content Nanosize Polymer Latexes Made by Microemulsion Polymerization.” Macromol. Chem. Phys., 199 1075–1079 (1998)

    Article  CAS  Google Scholar 

  40. Ming, W, Zhao, Y, Cui, J, Fu, S-K, Jones, FN, “Formation of Irreversible Nearly Transparent Physical Polymeric Hydrogels During a Modified Microemulsion Polymerization.” Macromolecules, 32 528–530 (1999)

    Article  CAS  Google Scholar 

  41. Ming, W, Zhao, Y, Fu, S, Jones, FN, Formation of Irreversible Nearly Transparent Physical Polymeric Hydrogels During a Modified Microemulsion Polymerization. Polym. Mater. Sci. Eng., 514 (1999)

  42. Joshi, R, Lefevre, E, Patel, C, Provder, T, Crombez, R, Shen, W, Jones, FN, “Thermoanalytical and Morphological Studies of Cross-Linked Latex Films by Advanced Techniques.” J. Therm. Anal. Calorim., 93 (1) 19–262 (2008)

    Article  CAS  Google Scholar 

  43. Joshi, RG, Provder, T, Ziemer, PD, Mao, W, Shen, W, Jones, FN, “Investigation of the Effect of Precoalescence or Postcoalescence Crosslinking on Film Formation, Properties, and Latex Morphology.” J. Coat. Technol. Res., 6 (1) 47 (2009)

    Article  CAS  Google Scholar 

  44. Chang-Mei, KE, Hou-Zhi, W, Wei, D, Yan, W, Jun, XU, Hui, D, Mei-jie, X, Hui-zhong, Z, Xuan-ke, L, “High Solids-Content Nanosize Polymeric Microlatexes Made by Microemulsion Copolymerization at Ambient Temperature.” J. Wuhan Univ. Technol. Mater. Sci. Ed., 19 (1) 30–34 (2004)

    Article  Google Scholar 

  45. Zosel, A, Ley, G, “Influence of Crosslinking on Structure, Mechanical Properties, and Strength of Latex Films.” Macromolecules, 26 2222–2227 (1993)

    Article  CAS  Google Scholar 

  46. Tamai, T, Pinenq, P, Winnik, MA, “Effect of Cross-Linking on Polymer Diffusion in Poly(Butyl Methacrylate-co-Butyl Acrylate) Latex Films.” Macromolecules, 32 6102–6110 (1999)

    Article  CAS  Google Scholar 

  47. Aradian, A, Raphael, E, De Gennes, PG, “A Scaling Theory of the Competition Between Interdiffusion and Cross-Linking at Polymer Interfaces.” Macromolecules, 35 4036–4043 (2002)

    Article  CAS  Google Scholar 

  48. Ghazaly, HM, Daniels, ES, Dimonie, VL, El-Aasser, MS, Klein, A, “Synthesis and Characterization of a Macromonomer Crosslinker.” J. Appl. Polym. Sci., 77 1362–1368 (2000)

    Article  CAS  Google Scholar 

  49. Ghazaly, HM, Daniels, ES, Dimonie, VL, Klein, A, El-Aasser, MS, “Miniemulsion Copolymerization of n-Butyl Methacrylate with Crosslinking Monomers.” J. Appl. Polym. Sci., 81 1721–1730 (2001)

    Article  CAS  Google Scholar 

  50. Ghazaly, HM, Daniels, ES, Dimonie, VL, Klein, A, Sperling, LH, El-Aasser, MS, “Properties of n-Butyl Methacrylate Copolymer Latex Films Derived from Crosslinked Latex Particles.” J. Appl. Polym. Sci., 88 42–49 (2003)

    Article  CAS  Google Scholar 

  51. Kessel, N, Illsley, DR, Keddie, JL, “The Diacetone Acrylamide Crosslinking Reaction and Its Influence on the Film Formation of an Acrylic Latex.” J. Coat. Technol. Res., 5 (3) 285 (2008)

    Article  CAS  Google Scholar 

  52. Emmons, WD, (to Rohm and Haas), “Ambient or Low-Temperature Curable Coatings.” U.S. Patent 4,210,565 (1980)

  53. “Diacetone Acrylamide, N-(1,1Dimethyl-3-Oxobutyl)-Acrylamide.” In: Kyowa Hakko U.S.A. Inc. Technical Information Sheet (retrieved), p. 4 (2008)

  54. Taylor, JW, Winnik, MA, “Functional Latex and Thermoset Latex Films.” J. Coat. Technol. Res., 1 (3) 163–190 (2004)

    Article  CAS  Google Scholar 

  55. Robinson, GF, Shemancik, RC, Speight, RD, Wong PT, Znidersic KM, (to Akzo Nobel), “Coating Compositions and Coatings Formed Therefrom.” US Patent 6,605,359 (2003)

  56. Hill, LW, “Dynamic Mechanical and Tensile Properties.” In: Koleske, JV (ed.) Paint and Coatings Testing Manual: Fourteenth Edition of the Gardner-Sward Handbook, pp. 534–546. ASTM, Ann Arbor (1995)

    Google Scholar 

Download references

Acknowledgments

This research was supported by College of Technology PhD program and the Coatings Research Institute at Eastern Michigan University. This research was also supported by a Doctoral fellowship from the College of Technology at EMU. These supports are greatly appreciated. The authors would especially like to thank Malik, GA, Surface Science Lab, Eastern Michigan University, for AFM imaging of latex samples. The authors acknowledge truly valuable inputs from Dr. Ming for the modified microemulsion process; Dr. Bruce Weiner (Brookhaven Instruments) for discussion of DLS measurements of nanoparticle size latexes, Dr. Vijay Mannari (COT), Paul Ziemer (COT), Ninad Dixit (COT) for their help with troubleshooting the modified microemulsion process and Madhavi Joshi’s help with the synthesis set-up and DMA samples preparation. The authors would especially like to thank Dr. Fred Willard (CAS-MI) and Marty Donbrosky (CAS-MI) for facilitating synthetic experimental supplies and instruments for ASTM characterization tests and MFT determinations and Dr. Brian Hanrahan (Kyowa Hakko USA) for supplying with crosslinking monomers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Provder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R.G., Jones, F.N., Provder, T. et al. Nanolatex technology 1: synthesis and characterization of nanosize acrylic latexes and comparison to their conventional size counterparts. J Coat Technol Res 18, 1481–1500 (2021). https://doi.org/10.1007/s11998-021-00475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00475-z

Keywords

Navigation