Skip to main content
Log in

Production of Carbon Binders from Petroleum and Coal Derivatives

  • CHEMISTRY
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

In processing a mixture of petroleum derivatives and coal tar with clinkering coal, the temperature and pressure affect the composition and properties of the product, as here described. Increasing the temperature results in a pitch-like product with considerable coking value (content of coke residue) and high softening temperature. At high pressure (16 atm), the pitch-like product has properties similar to those of carbon binder with low softening temperature. The change in properties of the product is directly related to the aromatic content of its components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pérez, M., Granda, M., García, R., et al., Pyrolysis behavior of petroleum pitches prepared at different conditions, J. Anal. Appl. Pyrolysis, 2002, vol. 6, pp. 223–239.

    Article  Google Scholar 

  2. Watanabe, F., Korai, Y., Mochida, I., and Nishimura, Y., Structure of melt-blown mesophase pitch-based carbon fiber, Carbon, 2000, vol. 38, pp. 741–747.

    Article  CAS  Google Scholar 

  3. Kumar, S. and Srivastava, M., Meliorate optical textures and mesophase contents by promising approach of deasphalting of petroleum residues, J. Ind. Eng. Chem., 2017, vol. 48, pp. 133–141.

    Article  CAS  Google Scholar 

  4. Kim, B.H., Kim, J.H., Kim, J.G., et al., Electrochemical and structural properties of lithium battery anode materials by using a molecular weight controlled pitch derived from petroleum residue, J. Ind. Eng. Chem., 2016, vol. 41, pp. 1–9.

    Article  CAS  Google Scholar 

  5. Machado, M.L., Beatty, P.W., Fetzer, J.C., et al., Evaluation of the relationship between PAH content and mutagenic activity of fumes from roofing and paving asphalts and coal tar pitch, Fundam. Appl. Toxicol., 1993, vol. 21, pp. 492–499.

    Article  CAS  Google Scholar 

  6. Mannweiler, U.C. and Perruchoud, R.C., Reduction of polycyclic aromatic hydrocarbons (PAH) in anodes by using petroleum pitch as binder material, in Light Metals 1997, Warrendale, PA: Miner., Met. Mater. Soc., 1997, pp. 555–558.

    Google Scholar 

  7. Greinke, R.A. and O’Connor, L.H., Determination of molecular weight distributions of polymerized petroleum pitch by gel permeation chromatography with quinoline eluent, Anal. Chem., 1980, vol. 52, pp. 1877–1884.

    Article  CAS  Google Scholar 

  8. Shinohara, K. and Fujimoto, H., The microstructure of highly-oriented graphite tape prepared from mesophase pitch by melt-blowing, Carbon, 2012, vol. 50, pp. 4926–4933.

    Article  CAS  Google Scholar 

  9. Perez, M., Granda, M., Santamaria, R., et al., Formulation, structure and properties of carbon anodes from coal tar pitch/petroleum pitch blends, in Light Metals 2003, Warrendale, PA: Miner., Met. Mater. Soc., 2003, vol. 4, pp. 495–501.

    Google Scholar 

  10. Rocha, V.G., Blanco, C., Santamaría, R., et al., Pitch/coke wetting behaviour, Fuel, 2005, vol. 84, pp. 1550–1556.

    Article  CAS  Google Scholar 

  11. McHenry, E.R., Coal-tar/petro industrial pitches, in Light Metals 1997, Warrendale, PA: Miner., Met. Mater. Soc., 1997, pp. 543–548.

    Google Scholar 

  12. Wombles, R.H. and Kiser, M.D., Developing coal tar/petroleum pitches, in Light Metals 2000, Warrendale, PA: Miner., Met. Mater. Soc., 2000, pp. 537–541.

    Google Scholar 

  13. Kuznetsov, P.N., Obukhova, A.V., Kuznetsova, L.I., et al., Thermal dissolution of GZh coal in different paste-forming agents, Solid Fuel Chem., 2018, vol. 52, pp. 296–301.

    Article  CAS  Google Scholar 

  14. Andrews, R., Rantell, T., Jacques, D., and Hower, J., Mild coal extraction for the production of anode coke from Blue Gem coal, Fuel, 2010, vol. 89, pp. 2640–2647.

    Article  CAS  Google Scholar 

  15. Stansberry, P.G. and Zondlo, J.W., Development of binder pitches from coal extract and coal tar pitch blends, in Light Metals 2001, Warrendale, PA: Miner., Met. Mater. Soc., 2001, pp. 581–586.

    Google Scholar 

  16. Yang, J., Stansberry, P., Zondlo, J., and Stiller, A., Characteristics and carbonization behaviors of coal extracts, Fuel Process. Technol., 2002, vol. 79, pp. 205–222.

    Article  Google Scholar 

  17. Suriyapraphadilok, U., Jennis-McGroarty, C., and Andersen, J., Comparison of alternative coal derived binder pitches for carbon materials, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 2004, vol. 49, p. 636.

    CAS  Google Scholar 

  18. Kuznetsov, P.N., Perminov, N.V., Buryukin, F.A., et al., Thermal dissolution of coal in industrial solvents, Coke Chem., 2019, vol. 62, no. 1, pp. 12–17.

    Article  Google Scholar 

  19. Maloletnev, A.S., Gyul’maliev, A.M., and Mazneva, O.A., Chemical composition of the distillate fractions of coal tar from OAO Altai-Koks, Solid Fuel Chem., 2014, vol. 48, no. 1, pp. 11–21.

    Article  CAS  Google Scholar 

  20. Shui, H., Zhou, Y., Li, H., et al., Thermal dissolution of Shenfu coal in different solvents, Fuel, 2013, vol. 108, pp. 385–390.

    Article  CAS  Google Scholar 

  21. Rahman, M., Samanta, A., and Gupta, R., Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction, Fuel Process. Technol., 2013, vol. 115, pp. 88–98.

    Article  CAS  Google Scholar 

  22. Kuznetsov, P.N., Kamenskii, E.S., Kolesnikova, S.M., et al., Temperature effect on the thermal dissolution of coal, Solid Fuel Chem., 2018, vol. 52, pp. 163–168.

    Article  CAS  Google Scholar 

  23. Kuznetsov, P.N., Kuznetsova, L.I., Buryukin, F.A., et al., Methods for the preparation of coal-tar pitch, Solid Fuel Chem., 2015, vol. 49, pp. 213–225.

    Article  CAS  Google Scholar 

  24. Krzton, A., Cagniant, D., Gruber, R., et al., Application of Fourier self-deconvolution to the FT-i.r. characterization of coals and their N-methyl 2-pyrrolidinone extraction products, Fuel, 1995, vol. 74, pp. 217–225.

    Article  CAS  Google Scholar 

  25. Butuzova, L., Krzton, A., Saranchuk, V., and Isajeva, L., Influence of oxygen on the behavior of oxygen-containing groups of soft coal in pyrolysis, Fuel, 1994, vol. 73, pp. 945–950.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research made use of equipment at the Krasnoyarsk Regional Collective-Use Center of the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

Funding

State support was provided to the Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences (project 0287-2021-0014). Financial support was provided to Siberian Federal University by the Russian Foundation for Basic Research (grant 19-53-44001). Finally, financial support was provided to the Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, by the Mongolian Foundation for Science and Technology (grant ShUGKh/OKhU/2019/3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Safin, P. N. Kuznetsov, S. S. Kositsyna or F. A. Buryukin.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safin, V.A., Kuznetsov, P.N., Kositsyna, S.S. et al. Production of Carbon Binders from Petroleum and Coal Derivatives. Coke Chem. 64, 156–162 (2021). https://doi.org/10.3103/S1068364X21040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X21040074

Keywords:

Navigation