Skip to main content
Log in

Evaluation of eggplant rootstocks for grafting eggplant to improve fruit yield and control bacterial wilt disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial wilt caused by Ralstonia solanacearum is a major devastating soil-borne disease impeding eggplant cultivation worldwide. The present investigation was conducted to recognize and assess bacterial wilt resistant rootstocks among Solanum melongena (Haritha, Surya, SM 1, SM 2, SM 3, SM116, and SM 398), Solanum torvum (St TNAU 1 and St KAU 1), and Solanum sisymbrifolium (SS 1) for vigor, yield and qualitative traits of ‘Green Long Hybrid’ scion through grafting. The artificial inoculation method as well as the sick plot method of bacteria wilt screening were adopted. The root dip method of artificial inoculation was found to be the most reliable method as compared to media drenching and stem inoculation methods. All the rootstocks except Solanum sisymbrifolium possessed a high degree of bacterial wilt resistance (in artificial as well as sick plot conditions). Maximum plant spread, stem girth, number of primary branches, yield per plant (6.69 kg), number of fruits per plant (94.80), fruit length (22.22 cm), root length (63.65 cm), and root spread (87.05 cm) were exhibited by Green Long Hybrid scion when grafted onto Solanum melongena cv. Haritha rootstock. Taller plants with high fruit girth (10.97 cm) and average fruit weight (78.00 g) of scion were recorded on SM 116 rootstock. The highest dry matter content (11.12%) and total phenolic content (113.30 mg/100 g) of fruits were observed in scion when SM 398 and SM 3 were used as rootstocks, respectively. Overall, ‘Haritha’ cultivar was found to be the best rootstock for grafting in the current study. Thus, grafting technology can be effectively used for the control of bacterial wilt as well as for acquiring higher yield in eggplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alan, O., Ozdemir, N., & Gunen, Y. (2007). Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6, 362–365.

    Article  Google Scholar 

  • Aloyce, A., Ndakidemi, P. A., & Mbega, E. R. (2017). Identification and management challenges associated with Ralstonia solanacearum (smith), causal agent of bacterial wilt disease of tomato in sub-saharan Africa. Pakistan Journal of Biological Science, 20, 530–542.

    Article  CAS  Google Scholar 

  • Artal, R. B., Gopalakrishnan, C., & Thippeswamy, B. (2012). An efficient inoculation method to screen tomato, eggplant and chilli entries for bacterial wilt resistance. Pest Management in Horticultural Ecosystem, 18, 70–73.

    Google Scholar 

  • Attia, M. F., Arafa, A. M., Moustafa, M. A., & Mohamed, M. A. (2003). Pepper grafting, a method of controlling soil borne diseases and enhancement of fruit yield: 1. Improvement of pepper resistance to fusarium wilt. Egyptian Journal of Phytopathology, 31, 151–165.

    Google Scholar 

  • Bainsla, N. K., Singh, S., Singh, P. K., Kumar, K., Singh, A. K., & Gautam, R. K. (2016). Genetic behaviour of bacterial wilt resistance in brinjal (Solanum melongena L.) in tropics of Andaman and Nicobar islands of India. American Journal of Plant Science, 7, 333–338.

    Article  CAS  Google Scholar 

  • Bhavana, P., & Singh, A. K. (2016). Biodiversity in eggplant germplasm against resistance to bacterial wilt. Bangladesh Journal of Botany, 45, 737–739.

    Google Scholar 

  • Bidaramali, V., Akhtar, S., & Das, A. (2020). Proximate composition and bioactive compounds in diverse eggplant genotypes. Current Journal of Applied Science and Technology, 113-121.

  • Bletsos, F. A. (2005). Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and Fusarium wilt control in melon. Journal of Phytopathology, 153, 155–161.

    Article  CAS  Google Scholar 

  • Bletsos, F., Thanassoulopoulos, C., & Roupakias, D. (2003). Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience, 38, 183–186.

    Article  Google Scholar 

  • Buyela, D. K., David, M. M., George, T. O., & Pascaline, J. (2017). Isolation and characterisation of Ralstonia solanacearum strains of tomato wilt disease from Maseno, Kenya. Journal of Asian Scientific Research, 7(9), 404–420.

  • Champoiseau, P. G., Jones, J. B., & Allen, C. (2009). Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Progress, 10, 35.

    Article  Google Scholar 

  • Chandrashekara, K. N., Prasannakumar, M. K., Deepa, M., Vani, A., & Khan, A. N. A. (2012). Prevalence of races and biotypes of Ralstonia solanacearum in India. Journal of Plant Protection Research, 52(1), 53–58.

    Article  Google Scholar 

  • Cohen, R., Horev, C., Burger, Y., Shriber, S., Hershenhorn, J., Katan, J., & Edelstein, M. (2002). Horticultural and pathological aspects of Fusarium wilt management using grafted melons. Horticultural Science, 37, 1069–1073.

    Google Scholar 

  • Cürük, S., Durgac, C., Özdemir, B., & Kurt, S. (2005). Comparisons of grafted biennial and conventional production systems for eggplant (Solanum melongena L.) varieties in a Mediterranean region of Turkey. Asian Journal of Plant Science, 2, 117–122.

    Article  Google Scholar 

  • Date, H., Nasu, H., & Hatamoto, M. (1994). Breakdown of resistance of eggplant rootstock (Solanum torvum Swartz) to bacterial wilt by high ambient temperature. Japanese Journal of Phytopathology, 60(4), 483–486.

    Article  Google Scholar 

  • Daunay, M. C. (2008). Eggplant. In: Prohens, J., Nuez, F. (Eds.), Handbook of plant breeding: Vegetables II. Springer, pp. 163–220.

  • Davis, A. R. & Perkins-Veazie, P. (2005). Rootstock effects on plant vigour and watermelon fruit quality. Report-Cucurbit Genetics Cooperative. 28–29 (2005-2006). USDA-ARS, South Central Agricultural Research Centre, . 4p.

  • Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., & Zhang, X. (2008a). Grafting effects on vegetable quality. HortScience, 43(6), 1670–1672.

    Article  Google Scholar 

  • Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S. G., & Lee, J. M. (2008b). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50–74.

    Article  Google Scholar 

  • Djidonou, D., Zhao, X., Simonne, E. H., & Koch, K. E. (2013). Yield, water and nitrogen use efficiency in field-grown, grafted tomatoes. Horticultural Science, 48, 485–492.

    CAS  Google Scholar 

  • Dutta, P., & Rahman, B. (2012). Varietal screening of tomato against bacterial wilt disease under subtropical humid climate of Tripura. International Journal of Farm Science, 2, 40–43.

    Google Scholar 

  • Elphinstone, J. G. (2005). Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 9–28). APS Press.

  • Fegan, M. & Prior, P. (2005). “How complex is the ‘Ralstonia solanacearum species complex?’. In: Allen, C., Prior, P., Hayward, A.C. (Eds.), In Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press), pp. 449–461.

  • Fernandez, C. L., Hernandez, H. G., Colin, C. A. N., Lopez, J. L. A., Reyes, S. V., & Castellanes, J. Z. (2013). Morphological response and fruit yield of sweet pepper (Capsicum annuum L.) grafted commercial rootstocks. Biological Agriculture and Horticuture, 29, 1–11.

    Article  Google Scholar 

  • Fita, A., Pico, B., Roig, C., & Nuez, F. (2007). Performance of Cucumis melo ssp. agrestis as a rootstock for melon. Journal of Horticultural Science and Biotechnology, 82, 184–190.

    Article  Google Scholar 

  • Gaitonde, S., & Ramesh, R. (2014). Genetic characterization of Ralstonia solanacearum infecting eggplant Solanum melongena L. from Goa and Western region of India. Internaltional Journal of Current Science, 12, 128–139.

    Google Scholar 

  • Genin, S., & Denny, T. P. (2012). Pathogenomics of the Ralstonia solanacearum species complex. Annual Review of Phytopathology, 50, 67–89.

    Article  CAS  PubMed  Google Scholar 

  • Ginoux, G., & Laterrot, H. (1991). Greffage de l’aubergine. Proceedings reflexions du portegreffe. PHM Revue Horticole, 321, 49–54.

    Google Scholar 

  • Gisbert, C., Torres, P. S., Raigon, M. D., & Nuez, F. (2010). Phytophthora capsici resistance evaluation in pepper hybrids: Agronomic performance and fruit quality of pepper grafted plants. Journal of Food Agriculture and Environment, 8, 116–121.

    Google Scholar 

  • Gisbert, C., Prohens, J., Raigon, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128, 14–22.

    Article  Google Scholar 

  • Gizi, D., Stringlis, I. A., Tjamos, S. E., & Paplomatas, E. J. (2011). Seedling vaccination by stem injecting a conidial suspension of F2, a non-pathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biological Control, 58, 387–392.

    Article  Google Scholar 

  • Gopalakrishnan, T.R., Singh, P.K., Sheela, K.B., Shankar, M.A., Kutty, P.C.J. & Peter, K.V. (2005). Development of bacterial wilt resistant varieties and basis of resistance in eggplant (Solanum melongena L.). In: Allen, C., Prior, P., Hayward, A. (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press, pp. 293–300.

  • Gopalakrishnan, C., Singh, T. H., & Artal, R. B. (2014). Evaluation of eggplant accessions for resistance to bacterial wilt caused by Ralstonia solanacearum (EF smith) Yabuuchi et al. Journal of Horticultural Sciences, 9, 202–205.

    Google Scholar 

  • Gousset, C., Collonnier, C., Mulya, K., Mariska, I., Rotino, G. L., Besse, P., Servaes, A., & Sihachakr, D. (2005). Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Science, 168, 319–327.

    Article  CAS  Google Scholar 

  • Hernández-Romano, J., Ramírez-Rojas, S., & Ydrac-Morales, C. J. (2012). First report of Ralstonia solanacearum causing tomato bacterial wilt in Mexico. New Disease Reports, 26(22), 2044–0588.

    Google Scholar 

  • Ibrahim, A., Wahb-Allah, M., Abdel-Razzak, H., & Alsadon, A. (2014). Growth, yield, quality and water use efficiency of grafted tomato plants grown in greenhouse under different irrigation levels. Life Science Journal, 11, 118–126.

    Google Scholar 

  • Jang, Y., Yang, E., Cho, M., Um, Y., & KO, K. & Chun, C. (2012). Effect of grafting on growth and incidence of Phytophthora blight and bacterial wilt of pepper (Capsicum annuum L.). Horticulture, Environment, and Biotechnology, 53, 9–19.

    Article  Google Scholar 

  • Jhangta, M. (2015). Genetic variability for fruit yield and horticultural traits in eggplant (Solanum melongena L.). M.Sc. (Hort.) thesis, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India 97p.

  • Khah, E. M. (2011). Effect of grafting on growth, performance and yield of aubergine (Solanum melongena L.) in greenhouse and open-field. International Journal of Plant Production, 5, 359–366.

    Google Scholar 

  • Khah, E. M., Kakava, E., Mavromatis, A., Chachalis, D., & Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8, 3–7.

    Article  Google Scholar 

  • Khatun, M. (2011). Physio-morphological characterization genetic variability and correlation studies in eggplant genotypes. MSc. (Hort.) thesis, Sher-E-Bangla Agricultural University, Dhaka, 64p.

  • Kim, S. G., Hur, O. S., Ro, N. Y., Ko, H. C., Rhee, J. H., Sung, J. S., Ryu, K. Y., Lee, S. Y., & Baek, H. J. (2016). Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. Plant Pathology Journal, 32, 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, S. R., Davis, A. R., Liu, W., & Levi, A. (2008). Grafting for disease resistance. Horticultural Science, 43, 1673–1676.

    Google Scholar 

  • King, S. R., Davis, A. R., Zhang, X., & Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127, 106–111.

    Article  Google Scholar 

  • Kumar, S., Bharti, N., & Saravaiya, S. N. (2018). Vegetable grafting: A surgical approach to combat biotic and abiotic stresses-A review. Agricultural Reviews, 39, 1–11.

    Google Scholar 

  • Lee, J. M. (1994). Cultivation of grafted vegetables I. current status, grafting methods and benefits. Horticultural Science, 29(4), 235–239.

    Google Scholar 

  • Lee, J. M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28, 61–124.

    Google Scholar 

  • Li, S., Liu, Y., Wang, J., Yang, L., Zhang, S., Xu, C., & Ding, W. (2017). Soil acidification aggravates the occurrence of bacterial wilt in South China. Frontiers in Microbiology, 8, 703.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2015). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201, 463–469.

    Article  CAS  Google Scholar 

  • Malshe, K. V., Palshetkar, M. G., Desai, B. G., & Mane, S. B. (2016). Performance of different varieties of eggplant (Solanum melongena L.) under north Konkan conditions of Maharashtra, India. Plant Arch, 16, 568–571.

    Google Scholar 

  • Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M. A. X., Verdier, V., Beer, S. V., Machado, M. A., & Toth, I. A. N. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614–629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsic, K. N., & Osvald, J. (2004). The influence of grafting on yield of two tomato cultivars (Lycopersicon esculentum mill.) grown in a plastic house. Acta agriculturae Slovenica, 83, 243–249.

    Google Scholar 

  • Miceli, A., Sabatino, L., Moncada, A., Vetrano, F., & D’Anna, F. (2014). Nursery and field evaluation of eggplant grafted onto unrooted cuttings of Solanum torvum Sw. Scientia Horticulturae, 178, 203–210.

    Article  Google Scholar 

  • Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., Lopez, S., & Guardiola, J. L. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103, 9–17.

    Article  CAS  Google Scholar 

  • Mochizuki, H., & Yamakawa, K. (1979). Potential utilization of bacterial wilt resistant Solanum species as rootstock for eggplant production. Vegetable Crops Research Bulletin and Journal of Fruit and Ornamental Plant Research, 7, 11–18.

    Google Scholar 

  • Moncada, A., Miceli, A., Vetrano, F., Mineo, V., Planeta, D., Anna, D., & F. (2013). Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Scientia Horticulturae, 149, 108–114.

    Article  Google Scholar 

  • Namisy, A., Chen, J. R., Prohens, J., Metwally, E., Elmahrouk, M., & Rakha, M. (2019). Screening cultivated eggplant and wild relatives for resistance to bacterial wilt (Ralstonia solanacearum). Agriculture, 9(7), 157p.

  • Narayanankutty, C., Sreelatha, U., & Jaikumaran, U. (2015). Grafting to combat soil-borne diseases in vegetables. Indian Horticulture, 6, 9001–2008.

    Google Scholar 

  • Nisini, P., Colla, G., Granati, E., Temperini, O., Crino, P., & Saccardo, F. (2002). Rootstock resistance to Fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars. Scientia Horticulturae, 93, 281–288.

    Article  Google Scholar 

  • Passam, H. C., Stylianou, M., & Kotsiras, A. (2005). Performance of eggplant grafted on tomato and eggplant rootstocks. European Journal of Horticultural Science, 70, 130–134.

    Google Scholar 

  • Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L., & Jones, J. B. (2005). Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum. Plant Diseases, 89, 989–993.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Rashid, M. A., Hossain, M. M., Salam, M. A., & Masum, A. S. M. H. (2002). Grafting compatibility of cultivated eggplant varieties with wild Solanum species. Pakistan Journal of Biological Sciences, 5, 755–757.

    Article  Google Scholar 

  • Ramesh, R., Achari, G., Asolakar, T., Dsouza, M., & Singh, N. P. (2016). Management of bacterial wilt of eggplant using wild eggplant (Solanum torvum) as a rootstock. Indian Phytopathology, 69, 260–265.

    Google Scholar 

  • Ranil, R. H. G., Niranb, H. M. L., Plazasc, M., Fonsekaa, R. M., Fonsekad, H. H., Vilanovac, S., Andújarc, I., Gramazioc, P., Fitac, A., & Prohensc, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174–181.

    Article  Google Scholar 

  • Ravelomanantsoa, S., Verniere, C., Rieux, A., Costet, L., Chiroleu, F., Arribat, S., Cellier, G., Pruvost, O., Poussier, S., Robene, I. & Guerin, F. (2018). Molecular epidemiology of bacterial wilt in the Madagascar highlands caused by Andean (Phylotype IIB-1) and African (Phylotype III) brown rot strains of the Ralstonia solanacearum species complex. Frontiers plant science, 8, 2258p.

  • Sabatino, L., Palazzolo, E., & D-Anna, F. (2013). Grafting suitability of Sicilian eggplant ecotypes onto Solanum torvum: Fruit composition, production and phenology. Journal of Food Agriculture and Environment, 11, 1195–1200.

    CAS  Google Scholar 

  • Sabatino, L., Iapichino, G., Maggio, A., Danna, E., Bruno, M., & Danna, F. (2016). Grafting affects yield and phenolic profile of Solanum melongena L. landraces. Journal of Integrative Agriculture, 15, 1017–1024.

    Article  CAS  Google Scholar 

  • Sabatino, L., Iapichino, G., Danna, F., Palazzolo, E., Mennella, G., & Rotino, G. L. (2018). Hybrids and allied species as potential rootstocks for eggplant: Effect of grafting on vigour, yield and overall fruit quality traits. Scientia Horticulturae, 228, 81–90.

    Article  Google Scholar 

  • Sadarunnisa, S., Reddy, R. V. S. K., Begum, H., Reddy, N., & Reddy, M. K. (2018). Identification of sources of bacterial wilt resistance in eggplant (Solanum melongena L.). Vegetos International Journal of Plant Research, 31, 33–38.

    Article  Google Scholar 

  • Sadashivam, S., & Manickam, A. (1992). Enzymes: biochemical methods. New Age International (P) Limited, New Delhi, India.

  • Saile, E., McGarvey, J. A., Schell, M. A., & Denny, T. P. (1997). Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Journal of Phytopathology, 87, 1264–1271.

    Article  CAS  Google Scholar 

  • Sakata, Y., Monma, S., Narikawa, T., & Komochi, S. (1996). Evaluation of resistance to bacterial wilt and Verticillium wilt in eggplants (Solanum melongena L.) collected in Malaysia. Journal of Japanese Society for Horticultural Science, 65, 81–88.

    Article  Google Scholar 

  • Santhosha, H. M., Indiresh, K. M., Gopalakrishnan, C., & Singh, T. H. (2015). Evaluation of brinjal genotypes against bacterial wilt caused by Ralstonia solanacearum. Journal of Horticultural Sciences, 10(1), 74–78.

    Google Scholar 

  • Sarkar, S., & Chaudhuri, S. (2016). Bacterial wilt and its management. Current Science, 110, 1439–1445.

    CAS  Google Scholar 

  • Satyaprakash, B., Reddy, A. C., Naresh, P., Meenu, K., DC, L. R., Petikam, S., Gs, S. (2020). Breeding for bacterial wilt resistance in eggplant (Solanum melongena L.): Progress and prospects. Crop Prot, 105270.

  • Sheoran, O. P., Tonk, D. S., Kaushik, L. S., Hasija, R. C., & Pannu, R. S. (1998). Statistical software package for agricultural research workers. In D. S. Hooda & R. C. Hasija (Eds.), Recent advances in information theory (pp. 139–143). Statistics & Computer Applications. Department of Mathematics and Statistics.

  • Sidhu, A. S., & Dhatt, A. S. (2006). Current status of brinjal research in India. In I International Conference on Indigenous Vegetables and Legumes. Prospectus for Fighting Poverty, Hunger and Malnutrition, 752, 243–248.

  • Singh, N., Phukan, T., Sharma, P., Kabyashree, K., Barman, A., Kumar, R., Sonti, R. V., Genin, S., & Ray, S. K. (2018). An innovative root inoculation method to study Ralstonia solanacearum pathogenicity in tomato seedlings. Phytopathology, 108(4), 436–442.

    Article  CAS  PubMed  Google Scholar 

  • Sitaramiah, K., Singh, R. S., Vishwakarma, S. N., & Dubey, G. S. (1981). Eggplant cultivars resistant to Pseudomonas wilt. Indian Phytopathology, 34, 113.

    Google Scholar 

  • Stommel, J. R., & Whitaker, B. D. (2003). Phenolic acid content and composition of eggplant fruit in a germplasm core subset. The Journal of the American Society for Horticultural Science, 128, 704–710.

    Article  CAS  Google Scholar 

  • Umesh, C., Sreelatha, U., Kurian, S. P. & Narayanankutty, C. (2018). Evaluation of African marigold (Tagetes erecta L.) genotypes for yield and resistance to bacterial wilt pathogen, Ralstonia solanacearum. Journal of Tropical Agriculture, 56p.

  • Van Elsas, J. D., Kastelein, P., de Vries, P. M., & van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47, 842–854.

    Article  PubMed  Google Scholar 

  • Voutsela, S., Yarsi, G., Petropoulos, S. A., & Khan, E. M. (2012). The effect of grafting of five different rootstocks on plant growth and yield of tomato plants cultivated outdoors and indoors under salinity stress. African Journal of Agricultural Research, 7, 5553–5557.

    Google Scholar 

  • Wei, G. P., Yang, L. F., Zhu, Y. L., & Chen, G. (2009). Changes in oxidative damage, antioxidant enzyme activities and polyamine contents in leaves of grafted and non-grafted eggplant seedlings under stress by excess of calcium nitrate. Scientia Horticulturae, 120(4), 443–451.

    Article  CAS  Google Scholar 

  • Xian-Gui, Y., Jian-Hua, L., Guang-Hui, P., Yun, Z., & Qi-Feng, Y. (2006). Breeding of promising tomato genotypes and hybrids against bacterial wilt. Southwest china Journal of Agricultural Science, 19, 103–107.

    Google Scholar 

  • Yuliar, Yanetri, A., & Toyota. (2015). Minireview: Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environment, 30(1), 1–11.

    Article  CAS  Google Scholar 

  • Zheng, X., Zhua, Y., Liu, B., Lin, N., & Zheng, D. (2017). Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Microbial Pathogenesis., 113, 144–151.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadanand Kumbar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

The study presented in the manuscript does not involve human or animal subjects.

All authors have reviewed the final version of the manuscript and agree to its submission to your journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbar, S., Narayanankutty, C., Sainamole Kurian, P. et al. Evaluation of eggplant rootstocks for grafting eggplant to improve fruit yield and control bacterial wilt disease. Eur J Plant Pathol 161, 73–90 (2021). https://doi.org/10.1007/s10658-021-02305-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02305-9

Keywords

Navigation