Skip to main content
Log in

Unconditional uniqueness of higher order nonlinear Schrödinger equations

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data u0X, where \(X \in \{M_{2,q}^s(\mathbb{R}),\,{H^\sigma}(\mathbb{T}),\,{H^{{s_1}}}(\mathbb{R}) + {H^{{s_2}}}(\mathbb{T})\}\) and q ∈ [1, 2], s ⩾ 0, or σ ⩾ 0, or s2s1 ⩾ 0. Moreover, if M s2,q (ℝ) ↪ L3(ℝ), or if \(\sigma \geqslant {1 \over 6}\), or if \({s_1} \geqslant {1 \over 6}\) and \({s_2} > {1 \over 2}\) we how that the Cauchy problem is unconditionally wellposed in X. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. A. V. Babin, A. A. Ilyin, E. S. Titi: On the regularization mechanism for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64 (2011), 591–648.

    Article  MathSciNet  Google Scholar 

  2. M. Ben-Artzi, H. Koch, J.-C. Saut: Dispersion estimates for fourth order Schrödinger equations. C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87–92.

    Article  MathSciNet  Google Scholar 

  3. Á. Bényi, K. Gröchenig, K. Okoudjou, L. G. Rogers: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246 (2007), 366–384.

    Article  MathSciNet  Google Scholar 

  4. T. Boulenger, E. Lenzmann: Blowup for biharmonic NLS. Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503–544.

    Article  MathSciNet  Google Scholar 

  5. L. Chaichenets, D. Hundertmark, P. Kunstmann, N. Pattakos: Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal. 51 (2019), 3714–3749.

    Article  MathSciNet  Google Scholar 

  6. L. Chaichenets, D. Hundertmark, P. Kunstmann, N. Pattakos: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ. 19 (2019), 803–843.

    Article  MathSciNet  Google Scholar 

  7. L. Chaichenets, N. Pattakos: The global Cauchy problem for the NLS with higher order anisotropic dispersion. Glasg. Math. J. 63 (2021), 45–53.

    Article  MathSciNet  Google Scholar 

  8. A. Choffrut, O. Pocovnicu: Ill-posedness for the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. 2018 (2018), 699–738.

    MathSciNet  MATH  Google Scholar 

  9. A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90 (2014), Article ID 032922.

  10. M. Christ: Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. Available at https://arxiv.org/abs/math/0503366 (2005), 13 pages.

  11. M. Christ: Power series solution of a nonlinear Schrödinger equation. Mathematical Aspects of Nonlinear Dispersive Equations. Annals of Mathematics Studies 163. Princeton University Press, Princeton, 2007, pp. 131–155.

    MATH  Google Scholar 

  12. J. Colliander, T. Oh: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \({L^2}(\mathbb{T})\). Duke Math. J. 161 (2012), 367–414.

    Article  MathSciNet  Google Scholar 

  13. H. G. Feichtinger: Modulation spaces on locally compact abelian groups. Proceedings of International Conference on Wavelets and Applications 2002. New Delhi Allied Publishers, Delhi, 2003, pp. 99–140.

    Google Scholar 

  14. G. Fibich, B. Ilan, G. Papanicolaou: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62 (2002), 1437–1462.

    Article  MathSciNet  Google Scholar 

  15. M. Gubinelli: Rough solutions for the periodic Korteweg-deVries equation. Commun. Pure Appl. Anal. 11 (2012), 709–733.

    Article  MathSciNet  Google Scholar 

  16. S. Guo: On the 1D cubic nonlinear Schrödinger equation in an almost critical space. J. Fourier Anal. Appl. 23 (2017), 91–124.

    Article  MathSciNet  Google Scholar 

  17. Z. Guo, S. Kwon, T. Oh: Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys. 322 (2013), 19–48.

    Article  Google Scholar 

  18. Z. Guo, T. Oh: Non-existence of solutions for the periodic cubic NLS below L 2. Int. Math. Res. Not. 2018 (2018), 1656–1729.

    MathSciNet  MATH  Google Scholar 

  19. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. Clarendon Press, New York, 1979.

    MATH  Google Scholar 

  20. S. Herr, V. Sohinger: Unconditional uniqueness results for the nonlinear Schrödinger equation. Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages.

  21. Z.-Z. Kang, T.-C. Xia, W.-X. Ma: Riemann-Hilbert approach and N-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber. Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages.

  22. V. I. Karpman: Stabilization of soliton instabilities by higher order dispersion: Fourth-order nonlinear Schrödinger type equations. Phys. Rev. E 53 (1996), 1336–1339.

    Article  Google Scholar 

  23. V. I. Karpman, A. G. Shagalov: Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Physica D 144 (2000), 194–210.

    Article  MathSciNet  Google Scholar 

  24. T. Kato: On nonlinear Schrödinger equations. II. H S-solutions and unconditional well-posedness. J. Anal. Math. 67 (1995), 281–306.

    Article  MathSciNet  Google Scholar 

  25. N. Kishimoto: Unconditional uniqueness of solutions for nonlinear dispersive equations. Available at https://arxiv.org/abs/1911.04349 (2019), 48 pages.

  26. A. Miyachi, F. Nicola, S. Rivetti, A. Tabacco, N. Tomita: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137 (2009), 3869–3883.

    Article  MathSciNet  Google Scholar 

  27. T. Oh, N. Tzvetkov: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. Probab. Theory Relat. Fields 169 (2017), 1121–1168.

    Article  Google Scholar 

  28. T. Oh, Y. Wang: Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces. Forum Math. Sigma 6 (2018), Article ID e5, 80 pages.

  29. T. Oh, Y. Wang: On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53–84.

    MATH  Google Scholar 

  30. N. Pattakos: NLS in the modulation space M 2,q(ℝ). J. Fourier Anal. Appl. 25 (2019), 1447–1486.

    Article  MathSciNet  Google Scholar 

  31. B. Pausader: The cubic fourth-order Schrödinger equation. J. Func. Anal. 256 (2009), 2473–2517.

    Article  MathSciNet  Google Scholar 

  32. B. Pausader, S. Shao: The mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyperbolic Differ. Equ. 7 (2010), 651–705.

    Article  MathSciNet  Google Scholar 

  33. Y. V. Sedletsky, I. S. Gandzha: A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains. Nonlinear Dyn. 94 (2018), 1921–1932.

    Article  Google Scholar 

  34. A. Vargas, L. Vega: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite L 2 norm. J. Math. Pures Appl., IX. Sér. 80 (2001), 1029–1044.

    Article  Google Scholar 

  35. B. Wang, H. Hudzik: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36–73.

    Article  MathSciNet  Google Scholar 

  36. Y. Yue, L. Huang, Y. Chen: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Pattakos.

Additional information

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 258734477, SFB 1173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaus, F., Kunstmann, P. & Pattakos, N. Unconditional uniqueness of higher order nonlinear Schrödinger equations. Czech Math J 71, 709–742 (2021). https://doi.org/10.21136/CMJ.2021.0078-20

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/CMJ.2021.0078-20

Keywords

MSC 2020

Navigation