Skip to main content
Log in

Design and Implementation of an Improved Variable Step-Size NLMS-Based Algorithm for Acoustic Noise Cancellation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In adaptive filters, variable step-size-based algorithms have demonstrated better performance than conventional least mean square (LMS) and normalized LMS (NLMS) algorithms in terms of convergence speed, mean square error (MSE), and signal-to-noise ratio (SNR) improvement. Recently, adaptive filters have been recommended to be implemented on field programmable gate array (FPGA) devices due to their flexibility and high speed. Thus, recent research has focused on not only the performance measures of the algorithm but also on the required area, operating frequency, and power consumed to evaluate the proposed design after implementation. This paper first demonstrates the superiority of the regularized square root absolute error LMS (R-SRAE-LMS) for acoustic noise cancellation compared to other variable step size algorithms through a comparative study. Furthermore, transient and steady state analyses are discussed for the R-SRAE-LMS algorithm. Then, a detailed design of the R-SRAE-LMS adaptive filter is proposed in this paper. The design is divided into a forward path and two feedback paths. The device utilization, operating frequency and power consumption are also presented after a complete FPGA implementation process. The results show that R-SRAE-LMS has a high and stable SNR improvement curve compared to that of other acoustic noise cancellation algorithms. Moreover, the proposed design has remarkable implementation results compared to those of other variable step size adaptive filter designs. The output signal of the implemented proposed filter design attains performance measures very close to those of the fixed-point case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The input dataset is publicly available, and detailed output data are given in the manuscript.

References

  1. T. Aboulnasr, K. Mayyas, A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Trans. Signal Process. 45(3), 631–639 (1997). https://doi.org/10.1109/78.558478

    Article  Google Scholar 

  2. M.T. Alouane, A square root normalized LMS algorithm for adaptive identification with non-stationary inputs. J. Commun. Netw. 9(1), 18–27 (2007). https://doi.org/10.1109/JCN.2007.6182809

    Article  Google Scholar 

  3. M.S. Aslam, P. Shi, C. Lim, Robust active noise control design by optimal weighted least squares approach. IEEE Trans. Circuits Syst. I: Regular Papers 66(10), 3955–3967 (2019). https://doi.org/10.1109/TCSI.2019.2910290

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bahoura, H. Ezzaidi, FPGA-Implementation of parallel and sequential architectures for adaptive noise cancelation. Circuits Syst. Signal Process. 30(6), 1521 (2011). https://doi.org/10.1007/s00034-011-9310-0

    Article  Google Scholar 

  5. P. Behrooz, Computer arithmetic: algorithms and hardware designs. Oxford University Press 2, 272–277 (2010)

    Google Scholar 

  6. J. Benesty, C. Paleologu, S. Ciochina, On regularization in adaptive filtering. IEEE Trans. Audio Speech Lang. Process. 19(6), 1734–1742 (2011). https://doi.org/10.1109/TASL.2010.2097251

    Article  MATH  Google Scholar 

  7. W.J. Cai, A new variable step size LMS adaptive filtering algorithm and its analysis. Adv. Mater. Res., Trans Tech Publ 605, 2193–2196 (2013)

    Google Scholar 

  8. Y. Chen, J. Tian, Y. Liu, Variable step size LMS algorithm based on modified sigmoid function, in Audio, Language and Image Processing (ICALIP) International Conference on IEEE, pp. 627–630 (2014). https://doi.org/10.1109/ICALIP.2014.7009870

  9. P.P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability (John Wiley & Sons, New Jersey, 2006), pp. 164–178

    Book  Google Scholar 

  10. M. M. Dewasthale, R. Kharadkar, Improved NLMS algorithm with fixed step size and filter length using adaptive weight updation for acoustic noise cancellation. In: 2014 Annual IEEE India Conference (INDICON), pp. 1–7 (2014). https://doi.org/10.1109/INDICON.2014.7030464

  11. A. Elhossini, S. Areibi, R. Dony, An FPGA implementation of the LMS adaptive filter for audio processing. In: IEEE International Conference on Reconfigurable Computing and FPGA’s (ReConFig), pp. 1–8 (2006). https://doi.org/10.1109/RECONF.2006.307767

  12. S. Elliott, Signal Processing for Active Control (Academic press, Cambridge, 2000), pp. 77–78

    Google Scholar 

  13. A. Faza, S. Grant, J. Benesty, Adaptive regularization in frequency-domain NLMS filters. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 2625–2628 (2012). https://ieeexplore.ieee.org/ document/6333929

  14. P. Goel, M. Chandra, VlSI implementations of retimed high speed adaptive filter structures for speech enhancement. Microsyst. Technol. 24(12), 4799–4806 (2018). https://doi.org/10.1007/s00542-018-3884-4

    Article  Google Scholar 

  15. D.K. Gupta, V.K. Gupta, M. Chandra, G. Verma, Real-time implementation of parallel architecture based noise minimization from speech signals on FPGA. Wireless Pers. Commun. 103(3), 1941–1963 (2018). https://doi.org/10.1007/s11277-018-5889-9

    Article  Google Scholar 

  16. J.O. Hamblen, T.S. Hall, M.D. Furman, Rapid Prototyping of Digital Systems, SOPC. (Springer, Boston, 2007), pp. 59–68

    Google Scholar 

  17. M.H. Hayes, Statistical Digital Signal Processing and Modeling (John Wiley & Sons, Hoboken, 1996), pp. 514–516

    Google Scholar 

  18. S.S. Haykin, Adaptive Filter Theory (Pearson Education India, New York, 2008), pp. 432–433

    Google Scholar 

  19. Y. Hu, P.C. Loizou, Subjective comparison and evaluation of speech enhancement algorithms. Speech Commun. 49(7–8), 588–601 (2007). https://doi.org/10.1109/ICASSP.2006.1659980

    Article  Google Scholar 

  20. M. Jaiswal, S. Sharma, A. Sharma, Implementation of high-speed–low-power adaptive finite impulse response filter with novel architecture. J. Eng. 2015(3), 86–91 (2015)

    Article  Google Scholar 

  21. Z. Jingjing, Variable step size LMS algorithm. Int. J. Future Comput. Commun. 1(4), 389 (2012)

    Article  Google Scholar 

  22. Y. Kan, H. Yu, Y. Hu, An improved method for speech signal processing based on adaptive filter. In: Communication Problem-Solving (ICCP) IEEE International Conference, pp.397–400 (2014).

  23. S. Kaur, M. Singh, R. Agarwal, VHDL Implementation of non-restoring division algorithm using high speed adder/subtractor. Int. J. Adv. Res. Electr., Electron. Instrum. Eng. 2(7), 3317–3324 (2013)

    Google Scholar 

  24. Y. S. Lau, Z. M. Hussian, R. Harris, Performance of adaptive filtering algorithms: a comparative study. In: Australian Telecommunications Networks and Applications Conference, pp. 1–4 (2003).

  25. X. Li, Y. Fan, K. Peng, A variable step-size LMS adaptive filtering algorithm. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing (2009). https://doi.org/10.1109/WICOM.2009.5302683

  26. S. Li, S. Wu, Y. Wang, W. Guo, Y. Zhou, An improved NLMS algorithm based on speech enhancement. In: IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 896–899 (2015). https://doi.org/10.1109/IAEAC.2015.7428686

  27. J. Liu, Z. Jiang, J. Li, X. Huo, A novel variable step-size LMS adaptive filtering algorithm based on Lorentzian function. Command Control Simul. 31(2), 42–44 (2009)

    Google Scholar 

  28. A. Moore, FPGAs for Dummies, Altera Special Edition. (John Wiley & Sons, Hoboken, 2014), pp. 5–6

    Google Scholar 

  29. T. Padhi, M. Chandra, A. Kar, M.N.S. Swamy, A new hybrid active noise control system with convex combination of time and frequency domain filtered-X LMS algorithms. Circuits Syst. Signal Process. 37, 3275–3294 (2018). https://doi.org/10.1007/s00034-018-0784-x

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Padhi, M. Chandra, A. Kar, M.N.S. Swamy, Design and analysis of an improved hybrid active noise control system. Appl. Acoust. 127, 260–269 (2017). https://doi.org/10.1016/j.apacoust.2017.06.014

    Article  Google Scholar 

  31. T. Padhi, M. Chandra, Cascading time-frequency domain filtered-x LMS algorithm for active control of uncorrelated disturbances. Appl. Acoust. 149, 192–197 (2019). https://doi.org/10.1016/j.apacoust.2019.01.019

    Article  Google Scholar 

  32. T. Padhi, M. Chandra, A. Kar, Performance evaluation of hybrid active noise control system with online secondary path modeling. Appl. Acoust. 133, 215–226 (2018). https://doi.org/10.1016/j.apacoust.2017.12.029

    Article  Google Scholar 

  33. C. Paleologu, J. Benesty, S. Ciochina, Regularization of the affine projection algorithm. IEEE Trans. Circuits Syst. II Express Briefs 58(6), 366–370 (2011). https://doi.org/10.1109/TCSII.2011.2158162

    Article  Google Scholar 

  34. P.H. Prajapati, A.D. Darji, FPGA Implementation of MRMN with step-size scaler adaptive filter for impulsive noise reduction. Circuits Syst. Signal Process. 39, 3682–3710 (2020). https://doi.org/10.1007/s00034-019-01339-z

    Article  Google Scholar 

  35. Y. Qian, A new variable step size algorithm applied in LMS adaptive signal processing. In: Control and Decision Conference (CCDC) Chinese IEEE, pp. 4326–4329 (2016). https://doi.org/10.1109/CCDC.2016.7531744

  36. M. Salah, B. Abdelhamid, Improved variable step size regularized NLMS-based algorithm for speech enhancement. In: IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, pp. 701–706 (2019). https://doi.org/10.1109/SIPROCESS.2019.8868494

  37. Siddappaji, K. Sudha, Performance analysis of new time varying LMS (NTVLMS) adaptive filtering algorithm in noise cancellation system for speech enhancement. In: Information and Communication Technologies (WICT) 2014 Fourth World Congress on. IEEE, pp. 224–228 (2014). https://doi.org/10.1109/WICT.2014.7076909

  38. T. Sutikno, An efficient implementation of the non-restoring square root algorithm in gate level. Int. J. Comput. Theory Eng. vol. 3, no. 1, p. 46 (2011). http://www.ijcte.org/show-34-685-1.html

  39. T. Sutikno, A.Z. Jidin, A. Jidin, N.R.N. Idris, Simplified VHDL coding of modified non-restoring square root calculator. Int. J. Reconfig. Embed. Syst. 1(1), 37 (2012)

    Google Scholar 

  40. C. Venkatesan, P. Karthigaikumar, R. Varatharajan, Fpga implementation of modified error normalized LMS adaptive filter for ECG noise removal. Cluster Comput. (2018). https://doi.org/10.1007/s10586-017-1602-0

    Article  Google Scholar 

  41. B. Widrow, J.R. Glover, J.M. McCool, J. Kaunitz, C.S. Williams, R.H. Hearn, J.R. Zeidler, J.E. Dong, R.C. Goodlin, Adaptive noise cancelling: principles and applications. Proc. IEEE 63(12), 1692–1716 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, M., Dessouky, M. & Abdelhamid, B. Design and Implementation of an Improved Variable Step-Size NLMS-Based Algorithm for Acoustic Noise Cancellation. Circuits Syst Signal Process 41, 551–578 (2022). https://doi.org/10.1007/s00034-021-01796-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01796-5

Keywords

Navigation