Skip to main content
Log in

Capillary Electrophoresis-Indirect Laser-Induced Fluorescence Detection of Neomycin in Fish

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A capillary electrophoresis-indirect laser-induced fluorescence detection method was established for neomycin detection in fish. With rhodamine 6G as the background fluorescent substance, neomycin with weak ultraviolet absorption can be detected effectively. The types and concentrations of background buffer, pH, and separation voltage which affected the separation and analysis were all studied. With the optimal conditions, the limit of detection of neomycin was 5.0 ng/g, the recovery of fish samples is between 95.2 and 99.7%, and the relative standard deviation is between 2.7 and 3.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang F, Spiteller D, Koorbanally N et al (2007) Elaboration of neosamine rings in the biosynthesis of neomycin and butirosin. ChemBioChem 8:283–288. https://doi.org/10.1002/cbic.200600371

    Article  CAS  PubMed  Google Scholar 

  2. Waksman S, Lechevalier H (1949) Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Am J Obstet Gynecol 109:305–307. https://doi.org/10.1016/0002-9378(49)90816-9

    Article  CAS  Google Scholar 

  3. Ahmed A, Maruyama A, Khalifa H et al (2015) Seafood as a reservoir of gram-negative bacteria carrying integrons and antimicrobial resistancegenes in Japan. Biomed Environ Sci 28:924–927. https://doi.org/10.3967/bes2015.128

    Article  CAS  PubMed  Google Scholar 

  4. Luo P, Zhang J, Wang H et al (2016) Rapid and sensitive chemiluminescent enzyme immunoassay for the determination of neomycin residues in milk. Biomed Environ Sci 29:374–378. https://doi.org/10.3967/bes2016.048

    Article  CAS  PubMed  Google Scholar 

  5. Arsand J, Jank L, Martins M et al (2016) Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry. Talanta 154:38–45. https://doi.org/10.1016/j.talanta.2016.03.045

    Article  CAS  PubMed  Google Scholar 

  6. Zu M, Jiang J, Zhao H et al (2018) Rapid analysis of neomycin in cochlear perilymph of guinea pigs using disposable SPE cartridges and high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 1093–1094:52–59. https://doi.org/10.1016/j.jchromb.2018.06.055

    Article  CAS  Google Scholar 

  7. European Commsion (2010) Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. https://ec.europa.eu/search/?query_source=PUBLICHEALTH&QueryText=No+37%2F2010&op=&swlang=en&form_build_id=form-f3AB8rRF529_R_13ipJNZvykYibVzW72T12SWN-xHZg&form_id=nexteuropa_europa_search_search_form

  8. Inspection and Quarantine of the People’s Republic of China (2015) Determination of total residues of multi-antibiotic in animal-derived products-Microbial inhibition methhod, SN/T 4142-2015

  9. World Health Organization (2005) Joint FAO/WHO food standards programmed codex committee on residues of veterinary drugs in foods Sixteenth Session, CX/RVDF06/16/13. http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/vetdrugs/veterinary-drug-detail/zh/?d_id=44

  10. Japan (2014) The Japanese positive list system for agricultural chemical residues in foods. http://db.ffcr.or.jp/front/pesticide_comp

  11. Wan Y, Liu Y, Liu C et al (2018) Rapid determination of neomycin in biological samples using fluorescent sensor based on quantum dots with doubly selective binding sites. J Pharm Biomed Anal 154:75–84. https://doi.org/10.1016/j.jpba.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Xu B, Zhang Y et al (2009) Development of enzyme-linke immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Sci 82:53–58. https://doi.org/10.1016/j.meatsci.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Huidobro A, García A, Barbas C (2009) Rapid analytical procedure for neomycin determination in ointments by CE with direct UV detection. J Pharm Biomed Anal 49:1303–1307. https://doi.org/10.1016/j.jpba.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  14. Srisom P, Liawruangrath B, Liawruangrath S et al (2007) Simultaneous determination of neomycin sulfate and polymyxin B sulfate by capillary electrophoresis with indirect UV detection. J Pharm Biomed Anal 43:1013–1018. https://doi.org/10.1016/j.jpba.2006.09.041

    Article  CAS  PubMed  Google Scholar 

  15. Oertel R, Renner U, Kirch W (2004) Determination of neomycin by LC-tandem mass spectrometry using hydrophilic interaction chromatography. J Pharm Biomed Anal 35:633–638. https://doi.org/10.1016/j.jpba.2004.01.018

    Article  CAS  PubMed  Google Scholar 

  16. Li B, Schepdael A, Hoogmartens J et al (2007) Investigation of unknown related substances in commercial neomycin samples with liquid chromatography/ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1791–1798. https://doi.org/10.1002/rcm.3030

    Article  CAS  PubMed  Google Scholar 

  17. Stypulkowska K, Blazewicz A, Fijalek Z et al (2012) Determination of neomycin and related substances in pharmaceutical preparations by reversed-phase high performance liquid chromatography with mass spectrometry and charged aerosol detection. J Pharm Biomed Anal 76:207–214. https://doi.org/10.1016/j.jpba.2012.12.025

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Li J, Song X et al (2017) Simultaneousdetermination of aminoglycoside antibiotics in feeds using high performance liquidchromatography with evaporative light scattering detection. RSC Adv 7:1251–1259. https://doi.org/10.1039/c6ra26581b

    Article  CAS  Google Scholar 

  19. Megoulas N, Koupparis M (2004) Enhancement of evaporative light scattering detection in high-performance liquid chromatographic determination of neomycin based on highly volatile mobile phase, high-molecular-mass ion-pairing reagents and controlled peak shape. J Chromatogr A 1057:125–131. https://doi.org/10.1016/j.chroma.2004.09.052

    Article  CAS  PubMed  Google Scholar 

  20. Guan B, Yuan D (2007) Determination of neomycin in water samples by high performance anion chromatography with pulsed amperometric detection. Chin Chem Lett 18:201–204. https://doi.org/10.1016/j.cclet.2006.12.022

    Article  CAS  Google Scholar 

  21. Turnipseed S, Clark S, Karbiwnyk C et al (2009) Analysis of aminoglycoside residues in bovine milk by liquid chromatography electrospray ion trap mass spectrometry after derivatization with phenyl isocyanate. J Chromatogr B 877:1487–1493. https://doi.org/10.1016/j.jchromb.2009.03.025

    Article  CAS  Google Scholar 

  22. Posyniak A, Zmudzki J, Niedzielska J (2001) Sample preparation for residue determination of gentamicin and neomycin by liquid chromatography. J Chromatogr A 914:59–66. https://doi.org/10.1016/S0021-9673(00)00980-8

    Article  CAS  PubMed  Google Scholar 

  23. Saluti G, Diamanti I, Giusepponi D et al (2018) Simultaneous determination of aminoglycosides and colistins in food. Food Chem 266:9–16. https://doi.org/10.1016/j.foodchem.2018.05.113

    Article  CAS  PubMed  Google Scholar 

  24. Loomans E, Wiltenburg J, Koets M et al (2003) Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. J Agric Food Chem 51:587–593. https://doi.org/10.1021/jf020829s

    Article  CAS  PubMed  Google Scholar 

  25. Yuan L, Wei H, Feng H et al (2006) Rapid analysis of native neomycin components on a portable capillary electrophoresis system with potential gradient detection. Anal Bioanal Chem 385:1575–1579. https://doi.org/10.1007/s00216-006-0617-9

    Article  CAS  PubMed  Google Scholar 

  26. Liu R, Fung F, Feng H et al (2021) Analysis of lipopolysaccharides by coupling microscale solid-phase extraction with capillary electrophoresis-laser induced fluorescence. Microchem J 161:105771. https://doi.org/10.1016/j.microc.2020.105771

    Article  CAS  Google Scholar 

  27. Gassmann E, Kuo J, Zare R (1985) Electrokinetic separation of chiral compounds. Science 230:813–814. https://doi.org/10.1126/science.230.4727.813

    Article  CAS  PubMed  Google Scholar 

  28. Tezcan F, Erim F (2018) Determination of Vitamin B2 contents in black, green, sage, and rosemary tea infusions by capillary electrophoresis with laser-induced fluorescence detection. Preprints 4:86. https://doi.org/10.3390/beverages4040086

    Article  CAS  Google Scholar 

  29. Xiao M, Bai X, Liu Y et al (2018) Rapid quantification of aloin A and B in aloe plants and aloe-containing beverages, and pharmaceutical preparations by microchip capillary electrophoresis with laser induced fluorescence detection. J Sep Sci 41:3772–3781. https://doi.org/10.1002/jssc.201800338

    Article  CAS  PubMed  Google Scholar 

  30. Lačná J, Foret F, Kubáň P (2017) Sensitive determination of malondialdehyde in exhaled breath condensate and biological fluids by capillary electrophoresis with laser induced fluorescence detection. Talanta 169:85–90. https://doi.org/10.1016/j.tala-nta.2017.03.061

    Article  PubMed  Google Scholar 

  31. Nguyen B, Park M, Yoo Y et al (2018) Capillary electrophoresis-laser-induced fluorescence (CE-LIF)-based immunoassay for quantifying antibodies against cyclic citrullinated peptides. Analyst 143:3141–3147. https://doi.org/10.1039/C8AN00714D

    Article  CAS  PubMed  Google Scholar 

  32. Banos CE, Silva M (2011) A novel clean-up method for urine analysis of low-molecular mass aldehydes by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B 879:1412–1418. https://doi.org/10.1016/j.jchromb.2010.10.033

    Article  CAS  Google Scholar 

  33. Wang T, Luo D, Chen Z et al (2018) Sensitive determination of aldehyde metabolites in exhaled breath condensate using capillary electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem 410:7203–7210. https://doi.org/10.1007/s00216-018-1327-9

    Article  CAS  PubMed  Google Scholar 

  34. Couderc F, Ong-Meang V, Poinsot V (2017) Capillary electrophoresis hyphenated with UV-native-laser induced fluorescence detection (CE/UV-native-LIF). Electrophoresis 38:135–149. https://doi.org/10.1002/elps.201600248

    Article  CAS  PubMed  Google Scholar 

  35. Banos C, Silva M (2010) Analysis of low-molecular mass aldehydes in drinking waters through capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 31:2028–2036. https://doi.org/10.1002/elps.200900734

    Article  CAS  PubMed  Google Scholar 

  36. Kuhr W, Yeung E (1988) Indirect fluorescence detection of native amino acids in capillary zone electrophoresis. Anal Chem 60:1832–1834. https://doi.org/10.1021/ac00168a038

    Article  CAS  PubMed  Google Scholar 

  37. Kuhr W, Yeung E (1988) Optimization of sensitivity and separation in capillary zone electrophoresis with indirect fluorescence detection. Anal Chem 60:2642–2646. https://doi.org/10.1021/ac00174a021

    Article  CAS  Google Scholar 

  38. Zhang P, Xu G, Xiong J et al (2002) Capillary electrophoretic analysis of arsenic species with indirect laser induced fluorescence detection. J Sep Sci 25:155–159. https://doi.org/10.1002/1615-9314(20020201)25:3%3c155::aid-jssc155%3e3.0.co;2-k

    Article  CAS  Google Scholar 

  39. Yang J, Hu M, Cai Y et al (2010) Determination of uric acid in human urine by capillary zone electrophoresis with indirect laser-induced fluorescence detection. J Sep Sci 33:3710–3716. https://doi.org/10.1002/jssc.201000334

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Tang J, Wang S et al (2007) Method development for the determination of coumarin compounds by capillary electrophoresis with indirect laser-induced fluorescence detection. J Chromatogr A 1148:108–114. https://doi.org/10.1016/j.chroma.2006.09.070

    Article  CAS  PubMed  Google Scholar 

  41. Guo X, Wang K, Chen G et al (2017) Determination of strobilurin fungicide residues in fruits and vegetables by nonaqueous micellar electrokinetic capillary chromatography with indirect laser-induced fluorescence. Electrophoresis 38:2004–2010. https://doi.org/10.1002/elps.201700060

    Article  CAS  PubMed  Google Scholar 

  42. Beard N, de Mello A (2002) A polydimethylsiloxane/glass capillaryelectrophoresis microchip for the analysis of biogenic amines using indirect fluorescence detection. Electrophoresis 23:1722–1730. https://doi.org/10.1002/1522-2683(200206)23:11%3c1722::AID-ELPS1722%3e3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  43. Williams S, Bergström E, Goodall D et al (1993) Diode laser-based indirect absorbance detector forcapillary electrophoresis. J Chromatogr 636:39–45. https://doi.org/10.1016/0021-9673(93)80054-C

    Article  CAS  Google Scholar 

  44. Yang X, Wang X, Zhang X (2006) Indirect laser-induced fluorescence detection of diuretics separated by capillary electrophoresis. J Sep Sci 29:677–683. https://doi.org/10.1002/jssc.200500381

    Article  CAS  PubMed  Google Scholar 

  45. Barzan M, Hajiesmaeilbaigi F (2018) Investigation the concentration effect on the absorption and fluorescence properties of Rhodamine 6G dye. Optik 159:157–161. https://doi.org/10.1016/j.ijleo.2018.01.075

    Article  CAS  Google Scholar 

  46. Zhai H, Yuan K, Yu X et al (2015) A simple and compact fluorescence detection system for capillary electrophoresis and its application to food analysis. Electrophoresis 36:2509–2515. https://doi.org/10.1002/elps.201500265

    Article  CAS  PubMed  Google Scholar 

  47. Prčetić K, Cservenák R, Radulović N (2011) Determination of neomycin and oxytetracycline in the presence of their impurities in veterinary dosage forms by high-performance liquid chromatography/Tandem mass spectrometry. J AOAC Int 94:750–757. https://doi.org/10.1093/jaoac/94.3.750

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (NSFC, Grant No. 21005021), Natural Science Foundation of Guangdong Province (No. 2016A030313740, No. 2021A1515011410) and Guangdong Provincial Science and Technology Project (No. 2016B030303002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Yu or Haiyun Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Han, X., Yu, X. et al. Capillary Electrophoresis-Indirect Laser-Induced Fluorescence Detection of Neomycin in Fish. Chromatographia 84, 861–868 (2021). https://doi.org/10.1007/s10337-021-04075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04075-2

Keywords

Navigation