Skip to main content

Advertisement

Log in

Electronic structure and enhanced photocatalytic properties in \(\hbox {Ca(OH)}_{2}\)/GeC van der Waals heterostructure

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) van der Waals heterostructures (vdWHs) show great potential applications in the field of electronic and optoelectronic devices. In this work, first-principles calculations under hybrid HSE06 functional are performed to explore the electronic and optical properties of \(\hbox {Ca(OH)}_{2}/\hbox {GeC}\) vdWH. Our results show that the \(\hbox {Ca(OH)}_{2}/\hbox {GeC}\) vdWH owns a direct band gap of 2.73 eV, which is smaller than that of GeC monolayer. Meanwhile, this vdWH shows improved ability to absorb visible light and high-energy photons compared with the \(\hbox {Ca(OH)}_{2}\) and the GeC monolayers. The valence band maximum (VBM) potential of \(\hbox {Ca(OH)}_{2}/\hbox {GeC}\) is lower than that of GeC, which means that the \(\hbox {Ca(OH)}_{2}/\hbox {GeC}\) vdWH has better oxidation than that of the GeC monolayer. On the other hand, the \(\hbox {Ca(OH)}_{2}/\hbox {GeC}\) vdWH also satisfies the requirement for photocatalytic overall water splitting. These findings indicate that \(\hbox {Ca(OH)}_{2}/\hbox {GeC}\) vdWH is a promising candidate for optoelectronic devices and photocatalysis.

Graphic abstract

The electronic structure and photocatalytic properties of Ca(OH)2/GeC van der Waals heterostructure (vdWH) have been investigated through first principles calculation based on density functional theory. The calculation results show that among GeC monolayer, Ca(OH)\(_{2}\) monolayer and Ca(OH)\(_2\)/GeC vdWH, the Ca(OH)\(_2\)/GeC vdWH has the smallest band gap. The charge is transferred from the Ca(OH)\(_2\) layer to the GeC layer when the vdWH is synthesized. The vdWH improves the absorption in the visible light range (\(1.6~\mathrm{eV}< \mathrm{E} < 3.1~\mathrm{eV}\)) compared with that of the GeC monolayer. The VBM potential of Ca(OH)\(_2\)/GeC is higher than that of the GeC monolayer, so the oxidation ability of holes of Ca(OH)\(_2\)/GeC vdWH is stronger than that of the GeC monolayer. On the other hand, the Ca(OH)\(_2\)/GeC vdWH also satisfies the requirements for photocatalytic overall water splitting. These characteristics of the Ca(OH)\(_2\)/GeC vdWH show great application potential in the field of optoelectronic devices and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data reported in the paper are available from the corresponding author on reasonable request.]

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. W.Y. Yu, Z.L. Zhu, S.L. Zhang, X.L. Cai, X.F. Wang, C.Y. Niu, W.B. Zhang, Appl. Phys. Lett. 109, 103104 (2016)

    Article  ADS  Google Scholar 

  3. Y. C. Fan, X. B. Liu, J. R. Wang, H. Q. Ai and M. W. Zhao, Phys. Chem. Chem. Phys. 20, 11369 (2018)

    Article  Google Scholar 

  4. R.B. Pontes, R.H. Miwa, A.J.R. da Silva, A. Fazzio, J.E. Padilha, Phys. Rev. B 97, 235419 (2018)

    Article  ADS  Google Scholar 

  5. F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang and J. F. Jia, Nat. Mater. 14, 1020–1025 (2015)

    Article  ADS  Google Scholar 

  6. B. Qiu, X.W. Zhao, G.C. Hu, W.W. Yue, X.B. Yuan, J.F. Ren, Phys. E 116, 113729 (2020)

    Article  Google Scholar 

  7. Y. J. Ji, H. L. Dong, T. J. Hou and Y. Y. Li, J. Mater. Chem. A 6, 2212 (2018)

    Article  Google Scholar 

  8. Y. C. Rao, S. Yu and X. M. Duan, Phys. Chem. Chem. Phys 19, 17250 (2017)

    Article  Google Scholar 

  9. A. G. Gökc and E. Aktürk, Appl. Surf. Sci. 332, 147 (2015)

    Article  ADS  Google Scholar 

  10. L.H. Lin, G.C. Zhong, X.Y. Qiang, Y. Ying, Mater. Chem. Phys. 244, 122732 (2020)

    Article  Google Scholar 

  11. G.Z. Wang, L. Zhang, Y. Li, W.X. Zhao, A.L. Kuang, Y.D. Li, L.P. Xia, Y. Li, S.Y. Xiao, J. Phys. D: Appl. Phys. 53, 015104 (2020)

    Article  ADS  Google Scholar 

  12. X. Gao, Y. S. Na, Y. Y. Ma, S. Y. Wu, Z. X. Zhou, Appl. Phys. Lett. 114, 093902 (2019)

    Article  ADS  Google Scholar 

  13. P. Lou, J. Y. Lee, ACS. Appl. Mater. Inter. 12, 14289 (2020)

    Article  Google Scholar 

  14. H. T. T. Pham, T. V. Vu, V. T. Phamc, N. N. Hieu, H. V. Phuce, B. D. Hoif, N. T. T. Binh, M. Idreesg, B. Amin, C. V. Nguyen, RSC. Adv. 10, 2967 (2020)

    Article  ADS  Google Scholar 

  15. Y. Aierken, H. Sahin, F. Iyikanat, S. Horzum, A. Suslu, B. Chen, R.T. Senger, S. Tongay, F.M. Peeters, Phys. Rev. B 91, 245413 (2015)

    Article  ADS  Google Scholar 

  16. C. Xia, W. Xiong, J. Du, T. Wang, Z. Wei, J. Li, J. Phys. D 51, 015107 (2017)

    Article  ADS  Google Scholar 

  17. C. Xia, W. Xiong, J. Du, Y. Peng, Z. Wei, J. Li, J. Phys. D 50, 415304 (2017)

    Article  Google Scholar 

  18. C. Bacaksiz, A. Dominguez, A. Rubio, R.T. Senger, H. Sahin, Phys. Rev. B 95, 075423 (2017)

    Article  ADS  Google Scholar 

  19. E. Torun, H. Sahin, F. Peeters, Phys. Rev. B 93, 075111 (2016)

    Article  ADS  Google Scholar 

  20. X. H. Li, B. J. Wang, X. L. Cai, W. Y. Yu, L. W. Zhang, G. D. Wang, S. H. Ke, RSC. Adv. 7, 44394 (2017)

    Article  ADS  Google Scholar 

  21. K.D. Pham, T.D. Nguyen, H.V. Phuc, N.N. Hieu, H.D. Bui, B. Amin, C.V. Nguyen, Chem. Phys. Lett. 732, 136649 (2019)

    Article  Google Scholar 

  22. Y. Liu, N. O. Weiss, X. D. Duan, H. C. Cheng, Y. Huang, X. F. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1, 16042 (2016)

    Article  ADS  Google Scholar 

  23. K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. CastroNeto, Science 2016, 353, 6298

    Article  Google Scholar 

  24. G. Z. Wang, L. X. Gong, Z. F. Li, B. Wang, W. L. Zhang, B. F. Yuan, T. W. Zhou, X. J. Long, A. L. Kuang, Phys. Chem. Chem. Phys. 22, 9587–9592 (2020)

    Article  Google Scholar 

  25. Y. Zhi, G.Z. Wang, M.L. Bo, J.J. He, M.M. Zhong, W.X. Zhao, Y.D. Li, X.J. Long, W.L. Zhang, Mater. Res. Express 6, 035910 (2019)

    Article  ADS  Google Scholar 

  26. S. Wang, C.D. Ren, H.Y. Tian, JYu.M.L. Sun, Phys. Chem. Chem. Phys. 20, 13394 (2018)

    Article  Google Scholar 

  27. S. Wang, M.S. Ukhtary, R. Saito, Phys. Rev. Research 2, 033340 (2020)

    Article  Google Scholar 

  28. S. Wang, F.R. Pratama, M.S. Ukhtary, R. Saito, Phys. Rev. B 101, 081414 (2020)

    Article  ADS  Google Scholar 

  29. N. P. Armitage, J. P. Hu, Philos. Mag. Lett. 84, 105–107 (2004)

    Article  ADS  Google Scholar 

  30. C. Setty, J.P. Hu, Phys. Rev. B 89, 180509 (2014)

    Article  ADS  Google Scholar 

  31. J.P. Hu, Phys. Rev. B 73, 085325 (2006)

    Article  ADS  Google Scholar 

  32. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  33. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  34. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  35. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  37. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006)

    Article  ADS  Google Scholar 

  38. T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Phys. Rev. B 77, 233406 (2008)

    Article  ADS  Google Scholar 

  39. B. Luo, X. Wang, E. Tian, G. Li and L. Li, J. Mater. Chem. C 3, 8625–8633 (2015)

    Article  Google Scholar 

  40. Q.F. Li, X.F. Ma, L. Zhang, X.G. Wan, W.F. Rao, J. Phys. D 51, 255304 (2018)

    Article  Google Scholar 

  41. S. Wang, H. Y. Tian, C. D. Ren, J. Yu, M. L. Sun, Sci. Rep. 8, 12009 (2018)

    Article  ADS  Google Scholar 

  42. A.H. Nethercot, Phys. Rev. Lett. 33, 1088 (1974)

    Article  ADS  Google Scholar 

  43. M.A. Butler, D.S. Ginley, J. Electrochem. Soc. 125, 228 (1978)

    Article  ADS  Google Scholar 

  44. J. P. Perdew; M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  45. K. Ren, C. D. Ren, Y. Luo, Y. J. Xu, J. Yu, W. C. Tang, M. L. Sun, Phys. Chem. Chem. Phys. 21, 9949 (2019)

    Article  Google Scholar 

  46. P. Lou, J. Y. Lee, ACS Appl. Mater. Interfaces 12, 14289–14297 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Z.Y. did the calculations and wrote the paper, J. Y. and J.G. collected the references, X.Z. and G.H. prepared the figures, X.Y. analyzed the data, J.R. generated the research idea. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674197 and 11974215) and the Natural Science Foundation of Shandong Province (Grant No. ZR2018MA042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. B. Yuan or J. F. Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Song, J.Y., Guo, J.T. et al. Electronic structure and enhanced photocatalytic properties in \(\hbox {Ca(OH)}_{2}\)/GeC van der Waals heterostructure. Eur. Phys. J. B 94, 157 (2021). https://doi.org/10.1140/epjb/s10051-021-00169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00169-w

Navigation