Skip to main content
Log in

Giant enhancement of second-harmonic generation from a nanocavity metasurface

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Nonlinear plasmonic metasurfaces are compatible with complementary metal oxide semiconductor technology and highly promising for on-chip optical switching and modulations and nanoscale frequency conversions. However, the low nonlinear-optical response of metasurface devices limits their practical applications. To circumvent this constraint, we propose the design of a nanocavity plasmonic metasurface, in which the strong light localization in the nanocavity can be used to boost the efficiency of second-harmonic generation. Compared with the single-layer counterpart, experimental results show that the intensity of the second-harmonic waves in the nanocavity metasurface is enhanced by ∼790 times. The proposed nanocavity plasmonic metasurfaces in this work may open new routes for developing highly efficient nonlinear metacrystals for on-chip nonlinear sources, nonlinear image encryption, information processing, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kruk, and Y. Kivshar, ACS Photon. 4, 2638 (2017).

    Article  Google Scholar 

  2. H. T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys. 79, 076401 (2016), arXiv: 1605.07672.

    Article  ADS  Google Scholar 

  3. P. Genevet, and F. Capasso, Rep. Prog. Phys. 78, 024401 (2015).

    Article  ADS  Google Scholar 

  4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 339, 1232009 (2013).

    Article  Google Scholar 

  5. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

    Article  ADS  Google Scholar 

  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

    Article  ADS  Google Scholar 

  7. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, Nat. Nanotech. 13, 220 (2018).

    Article  ADS  Google Scholar 

  8. P. Lalanne, and P. Chavel, Laser Photon. Rev. 11, 1600295 (2017), arXiv: 1610.02507.

    Article  ADS  Google Scholar 

  9. M. Khorasaninejad, and F. Capasso, Science 358, eaam8100 (2017).

    Article  Google Scholar 

  10. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, Nat. Commun. 3, 1198 (2012).

    Article  ADS  Google Scholar 

  11. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, Nat. Nanotech. 13, 227 (2018).

    Article  ADS  Google Scholar 

  12. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, Nat. Nanotech. 10, 308 (2015).

    Article  ADS  Google Scholar 

  13. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, Nat. Nanotech. 10, 937 (2015), arXiv: 1411.1494.

    Article  ADS  Google Scholar 

  14. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, Science 339, 1405 (2013).

    Article  ADS  Google Scholar 

  15. G. Li, M. Kang, S. Chen, S. Zhang, E. Y. B. Pun, K. W. Cheah, and J. Li, Nano Lett. 13, 4148 (2013).

    Article  ADS  Google Scholar 

  16. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Nat. Photon. 9, 796 (2015).

    Article  ADS  Google Scholar 

  17. R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Science 358, 896 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Georgi, M. Massaro, K. H. Luo, B. Sain, N. Montaut, H. Herrmann, T. Weiss, G. Li, C. Silberhorn, and T. Zentgraf, Light Sci. Appl. 8, 70 (2019).

    Article  ADS  Google Scholar 

  19. K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, Science 361, 1104 (2018), arXiv: 1804.03494.

    Article  ADS  Google Scholar 

  20. T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, and M. Segev, Science 361, 1101 (2018).

    Article  ADS  Google Scholar 

  21. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313, 502 (2006).

    Article  ADS  Google Scholar 

  22. W. Cai, A. P. Vasudev, and M. L. Brongersma, Science 333, 1720 (2011).

    Article  ADS  Google Scholar 

  23. S. Chen, G. Li, F. Zeuner, W. H. Wong, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, and S. Zhang, Phys. Rev. Lett. 113, 033901 (2014), arXiv: 1403.1604.

    Article  ADS  Google Scholar 

  24. A. S. Shorokhov, E. V. Melik-Gaykazyan, D. A. Smirnova, B. Hopkins, K. E. Chong, D. Y. Choi, M. R. Shcherbakov, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, Nano Lett. 16, 4857 (2016).

    Article  ADS  Google Scholar 

  25. A. Ahmadivand, M. Semmlinger, L. Dong, B. Gerislioglu, P. Nordlander, and N. J. Halas, Nano Lett. 19, 605 (2019).

    Article  ADS  Google Scholar 

  26. S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nat. Nanotech. 14, 126 (2019).

    Article  ADS  Google Scholar 

  27. H. Liu, C. Guo, G. Vampa, J. L. Zhang, T. Sarmiento, M. Xiao, P. H. Bucksbaum, J. Vuckovic, S. Fan, and D. A. Reis, Nat. Phys. 14, 1006 (2018), arXiv: 1710.04244.

    Article  Google Scholar 

  28. H. Suchowski, K. O’Brien, Z. J. Wong, A. Salandrino, X. Yin, and X. Zhang, Science 342, 1223 (2013).

    Article  ADS  Google Scholar 

  29. M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F. Oulton, Science 358, 1179 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Jiang, V. Kravtsov, M. Tokman, A. Belyanin, and M. B. Raschke, Nat. Nanotech. 14, 838 (2019).

    Article  ADS  Google Scholar 

  31. M. Kauranen, and A. V. Zayats, Nat. Photon. 6, 737 (2012).

    Article  ADS  Google Scholar 

  32. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, Rev. Mod. Phys. 86, 1093 (2014).

    Article  ADS  Google Scholar 

  33. G. Li, S. Zhang, and T. Zentgraf, Nat. Rev. Mater. 2, 17010 (2017).

    Article  ADS  Google Scholar 

  34. K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, Nat. Mater. 14, 379 (2015).

    Article  ADS  Google Scholar 

  35. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, Nano Lett. 12, 673 (2012).

    Article  ADS  Google Scholar 

  36. V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, Adv. Mater. 26, 4074 (2014).

    Article  Google Scholar 

  37. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, Nat. Nanotech. 10, 412 (2015), arXiv: 1412.0698.

    Article  ADS  Google Scholar 

  38. S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, Phys. Rev. Lett. 109, 015502 (2012).

    Article  ADS  Google Scholar 

  39. L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, Phys. Rev. Lett. 118, 243904 (2017).

    Article  ADS  Google Scholar 

  40. J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, Nature 511, 65 (2014).

    Article  ADS  Google Scholar 

  41. H. Qian, S. Li, C. F. Chen, S. W. Hsu, S. E. Bopp, Q. Ma, A. R. Tao, and Z. Liu, Light Sci. Appl. 8, 13 (2019).

    Article  ADS  Google Scholar 

  42. K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J. H. Choi, A. Bogdanov, H. G. Park, and Y. Kivshar, Science 367, 288 (2020).

    Article  ADS  Google Scholar 

  43. B. Sain, C. Meier, and T. Zentgraf, Adv. Photon. 1, 024002 (2019).

    Article  ADS  Google Scholar 

  44. O. Reshef, I. De Leon, M. Z. Alam, and R. W. Boyd, Nat. Rev. Mater. 4, 535 (2019).

    Article  Google Scholar 

  45. S. Liu, P. P. Vabishchevich, A. Vaskin, J. L. Reno, G. A. Keeler, M. B. Sinclair, I. Staude, and I. Brener, Nat. Commun. 9, 2507 (2018), arXiv: 1711.00090.

    Article  ADS  Google Scholar 

  46. G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Nat. Mater. 14, 607 (2015).

    Article  ADS  Google Scholar 

  47. N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, Nat. Photon. 9, 180 (2015).

    Article  ADS  Google Scholar 

  48. W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, C. W. Qiu, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, Nat. Commun. 7, 11930 (2016).

    Article  ADS  Google Scholar 

  49. E. Almeida, O. Bitton, and Y. Prior, Nat. Commun. 7, 12533 (2016), arXiv: 1512.07899.

    Article  ADS  Google Scholar 

  50. S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, ACS Photon. 3, 117 (2016).

    Article  Google Scholar 

  51. G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, Nano Lett. 17, 7974 (2017).

    Article  ADS  Google Scholar 

  52. Z. Li, W. Liu, Z. Li, C. Tang, H. Cheng, J. Li, X. Chen, S. Chen, and J. Tian, Laser Photon. Rev. 12, 1800164 (2018).

    Article  ADS  Google Scholar 

  53. S. D. Gennaro, M. Rahmani, V. Giannini, H. Aouani, T. P. H. Sidiropoulos, M. Navarro-Cía, S. A. Maier, and R. F. Oulton, Nano Lett. 16, 5278 (2016).

    Article  ADS  Google Scholar 

  54. R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, Nano Lett. 18, 7709 (2018), arXiv: 1808.06439.

    Article  ADS  Google Scholar 

  55. A. Krasnok, M. Tymchenko, and A. Alù, Mater. Today 21, 8 (2018).

    Article  Google Scholar 

  56. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, Phys. Rev. B 85, 201403(R) (2012).

    Article  ADS  Google Scholar 

  57. H. Li, B. Fang, C. Chen, S. Zhu, and T. Li, Sci. Rep. 10, 417 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixin Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91950114, and 11774145), Guangdong Provincial Innovation and Entrepreneurship Project (Grant No. 2017ZT07C071), Natural Science Foundation of Shenzhen Innovation Commission (Grant No. JCYJ20200109140808088). The authors thank Dr. Y. S. Deng for his help with helium ion microscope imaging.

Supporting Information

The supporting information is available online at phys.scichina.com and http://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Deng, J., Jin, M. et al. Giant enhancement of second-harmonic generation from a nanocavity metasurface. Sci. China Phys. Mech. Astron. 64, 294215 (2021). https://doi.org/10.1007/s11433-021-1743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1743-1

Keywords

Navigation