Skip to main content
Log in

Wide-field optical sizing of single nanoparticles with 10 nm accuracy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

There is an increasing demand for new technologies to rapidly measure individual nanoparticles in situ for applications, including early-stage diagnosis of human diseases and environmental monitoring. Here, we demonstrate a label-free wide-field optical microscopy capable of sizing dispersed non-luminescent dielectric nanoparticles (with diameters down to 22 nm) with 10 nm accuracy. This technique utilizes enhanced nanoparticle-perturbed scattering by surface plasmons created on a gold film. In the meantime, an azimuthal rotation illumination module is installed on this microscope and a differential image processing technique is carried out. The relationship between the scattering intensity and the particle size was experimentally measured with good consistency with the theoretical prediction. The capability of precise measurement of the size of dispersed nanoparticles within a larger field of view in a label-free, non-invasive and quantitative manner may find broad applications involving single nanoparticle chemistry and physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Wang, Chem. Soc. Rev. 47, 2485 (2018).

    Article  Google Scholar 

  2. C. J. Williamson, A. Kupc, D. Axisa, K. R. Bilsback, T. P. Bui, P. Campuzano-Jost, M. Dollner, K. D. Froyd, A. L. Hodshire, J. L. Jimenez, J. K. Kodros, G. Luo, D. M. Murphy, B. A. Nault, E. A. Ray, B. Weinzierl, J. C. Wilson, F. Yu, P. Yu, J. R. Pierce, and C. A. Brock, Nature 574, 399 (2019).

    Article  ADS  Google Scholar 

  3. J. Zhou, A. I. Chizhik, S. Chu, and D. Jin, Nature 579, 41 (2020).

    Article  ADS  Google Scholar 

  4. P. Zhang, G. Ma, W. Dong, Z. Wan, S. Wang, and N. Tao, Nat. Methods 17, 1010 (2020).

    Article  Google Scholar 

  5. B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, Proc. Natl. Acad. Sci. USA 111, 14657 (2014).

    Article  ADS  Google Scholar 

  6. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, Proc. Natl. Acad. Sci. USA 111, E3836 (2014).

    Article  ADS  Google Scholar 

  7. T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, Proc. Natl. Acad. Sci. USA 108, 5976 (2011).

    Article  ADS  Google Scholar 

  8. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, Nat. Photon. 4, 46 (2010).

    Article  ADS  Google Scholar 

  9. X. C. Yu, Y. Zhi, S. J. Tang, B. B. Li, Q. Gong, C. W. Qiu, and Y. F. Xiao, Light Sci. Appl. 7, 18003 (2018).

    Article  ADS  Google Scholar 

  10. S. J. Tang, S. Liu, X. C. Yu, Q. Song, Q. Gong, and Y. F. Xiao, Adv. Mater. 30, 1800262 (2018).

    Article  Google Scholar 

  11. E. Underwood, Science 355, 342 (2017).

    Article  ADS  Google Scholar 

  12. A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, Nat. Mater. 8, 543 (2009).

    Article  ADS  Google Scholar 

  13. H. S. Choi, Y. Ashitate, J. H. Lee, S. H. Kim, A. Matsui, N. Insin, M. G. Bawendi, M. Semmler-Behnke, J. V. Frangioni, and A. Tsuda, Nat. Biotechnol. 28, 1300 (2010).

    Article  Google Scholar 

  14. A. Elsaesser, and C. V. Howard, Adv. Drug Deliver. Rev. 64, 129 (2012).

    Article  Google Scholar 

  15. Y. Kuai, J. Chen, X. Tang, Y. Xiang, F. Lu, C. Kuang, L. Xu, W. Shen, J. Cheng, H. Gui, G. Zou, P. Wang, H. Ming, J. Liu, X. Liu, J. R. Lakowicz, and D. Zhang, Sci. Adv. 5, eaav5335 (2019).

    Article  ADS  Google Scholar 

  16. D. Ruh, J. Mutschler, M. Michelbach, and A. Rohrbach, Optica 5, 1371 (2018).

    Article  ADS  Google Scholar 

  17. J. Boulanger, C. Gueudry, D. Münch, B. Cinquin, P. Paul-Gilloteaux, S. Bardin, C. Guérin, F. Senger, L. Blanchoin, and J. Salamero, Proc. Natl. Acad. Sci. USA 111, 17164 (2014).

    Article  ADS  Google Scholar 

  18. B. Huang, F. Yu, and R. N. Zare, Anal. Chem. 79, 2979 (2007).

    Article  Google Scholar 

  19. X. Shan, U. Patel, S. Wang, R. Iglesias, and N. Tao, Science 327, 1363 (2010).

    Article  ADS  Google Scholar 

  20. X. L. Zhou, Y. Yang, S. Wang, and X. W. Liu, Angew. Chem. Int. Ed. 59, 1776 (2020).

    Article  Google Scholar 

  21. W. Wang, Y. Yang, S. Wang, V. J. Nagaraj, Q. Liu, J. Wu, and N. Tao, Nat. Chem. 4, 846 (2012).

    Article  Google Scholar 

  22. S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, Proc. Natl. Acad. Sci. USA 107, 16028 (2010).

    Article  ADS  Google Scholar 

  23. Y. Yang, G. Shen, H. Wang, H. Li, T. Zhang, N. Tao, X. Ding, and H. Yu, Proc. Natl. Acad. Sci. USA 115, 10275 (2018).

    Article  Google Scholar 

  24. A. M. Maley, G. J. Lu, M. G. Shapiro, and R. M. Corn, ACS Nano 11, 7447 (2017).

    Article  Google Scholar 

  25. Y. Yang, C. Zhai, Q. Zeng, A. L. Khan, and H. Yu, ACS Nano 13, 13595 (2019).

    Article  Google Scholar 

  26. H. Yu, X. Shan, S. Wang, H. Chen, and N. Tao, ACS Nano 8, 3427 (2014).

    Article  Google Scholar 

  27. X. Sun, H. Liu, L. Jiang, R. Wei, X. Wang, C. Wang, X. Lu, and C. Huang, Opt. Lett. 44, 5707 (2019).

    Article  ADS  Google Scholar 

  28. Y. Jiang, and W. Wang, Anal. Chem. 90, 9650 (2018).

    Article  Google Scholar 

  29. A. Drezet, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Mater. Sci. Eng.-B 149, 220 (2008).

    Article  Google Scholar 

  30. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).

    Article  ADS  Google Scholar 

  31. A. Bouhelier, and G. P. Wiederrecht, Phys. Rev. B 71, 19 (2005).

    Article  Google Scholar 

  32. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).

    Article  Google Scholar 

  33. J. Ortega Arroyo, D. Cole, and P. Kukura, Nat. Protoc. 11, 617 (2016).

    Article  Google Scholar 

  34. A. B. Evlyukhin, and S. I. Bozhevolnyi, Surf. Sci. 590, 173 (2005).

    Article  ADS  Google Scholar 

  35. A. B. Evlyukhin, and S. I. Bozhevolnyi, Phys. Rev. B 71, 13 (2005).

    Article  Google Scholar 

  36. H. C. vane de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 87–94.

    Google Scholar 

  37. M. Kulmala, J. Kontkanen, H. Junninen, K. Lehtipalo, H. E. Manninen, T. Nieminen, T. Petäjä, M. Sipilä, S. Schobesberger, P. Rantala, A. Franchin, T. Jokinen, E. Järvinen, M. Äijälä, J. Kangasluoma, J. Hakala, P. P. Aalto, P. Paasonen, J. Mikkilä, J. Vanhanen, J. Aalto, H. Hakola, U. Makkonen, T. Ruuskanen, R. L. Mauldin, J. Duplissy, H. Vehkamäki, J. Bäck, A. Kortelainen, I. Riipinen, T. Kurtén, M. V. Johnston, J. N. Smith, M. Ehn, T. F. Mentel, K. E. J. Lehtinen, A. Laaksonen, V. M. Kerminen, and D. R. Worsnop, Science 339, 943 (2013).

    Article  ADS  Google Scholar 

  38. M. Tang, C. K. Chan, Y. J. Li, H. Su, Q. Ma, Z. Wu, G. Zhang, Z. Wang, M. Ge, M. Hu, H. He, and X. Wang, Atmos. Chem. Phys. 19, 12631 (2019).

    Article  ADS  Google Scholar 

  39. P. Liu, M. Song, T. Zhao, S. S. Gunthe, S. Ham, Y. He, Y. M. Qin, Z. Gong, J. C. Amorim, A. K. Bertram, and S. T. Martin, Nat. Commun. 9, 4076 (2018).

    Article  ADS  Google Scholar 

  40. H. B. Chen, D. Jiang, Y. N. Liu, C. Qian, X. L. Zhou, and X. W. Liu, Environ. Sci. Technol. Lett. 7, 298 (2020).

    Article  Google Scholar 

  41. Y. N. Liu, Z. T. Lv, W. L. Lv, and X. W. Liu, Proc. Natl. Acad. Sci. USA 117, 27148 (2020).

    Article  Google Scholar 

  42. A. K. Y. Lee, T. Y. Ling, and C. K. Chan, Faraday Discuss. 137, 245 (2008).

    Article  ADS  Google Scholar 

  43. G. Young, N. Hundt, D. Cole, A. Fineberg, J. Andrecka, A. Tyler, A. Olerinyova, A. Ansari, E. G. Marklund, M. P. Collier, S. A. Chandler, O. Tkachenko, J. Allen, M. Crispin, N. Billington, Y. Takagi, J. R. Sellers, C. Eichmann, P. Selenko, L. Frey, R. Riek, M. R. Galpin, W. B. Struwe, J. L. P. Benesch, and P. Kukura, Science 360, 423 (2018).

    Article  ADS  Google Scholar 

  44. D. Cole, G. Young, A. Weigel, A. Sebesta, and P. Kukura, ACS Photon. 4, 211 (2017).

    Article  Google Scholar 

  45. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, Nat. Nanotech. 13, 227 (2018).

    Article  ADS  Google Scholar 

  46. B. Xu, H. Li, S. Gao, X. Hua, C. Yang, C. Chen, F. Yan, S. Zhu, and T. Li, Adv. Photon. 2, 066004 (2020).

    ADS  Google Scholar 

  47. R. J. Lin, V. C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J. W. Chen, J. Chen, Y. T. Huang, J. H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, Nat. Nanotech. 14, 227 (2019).

    Article  ADS  Google Scholar 

  48. R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, Nat. Photon. 11, 322 (2017).

    Article  ADS  Google Scholar 

  49. Ø. I. Helle, F. T. Dullo, M. Lahrberg, J. C. Tinguely, O. G. Hellesø, and B. S. Ahluwalia, Nat. Photon. 14, 431 (2020), arXiv: 1903.05512.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douguo Zhang.

Additional information

This work was supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0200601), National Natural Science Foundation of China (Grant Nos. 11774330, 92050202, and U20A20216), Anhui Initiative in Quantum Information Technologies (Grant No. AHY090000), Advanced Laser Technology Laboratory of Anhui Province (Grant No. 20192301), Hefei Municipal Natural Science Foundation (Grant No. 2021007), and Key Research & Development Program of Anhui Province (Grant No. 202104a05020010). J. R. Lakowicz thanks the National Institute of General Medical Sciences (Grant Nos. R01 GM125976, and R21 GM129561) and National Institutes of Health (Grant Nos. S10OD19975, and S10RR026370) for support. The work was partially carried out at the University of Science and Technology of China’s Center for Micro and Nanoscale Research and Fabrication. D. G. Zhang is supported by a USTC Tang Scholarship.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Kuai, Y., Zhan, Q. et al. Wide-field optical sizing of single nanoparticles with 10 nm accuracy. Sci. China Phys. Mech. Astron. 64, 294213 (2021). https://doi.org/10.1007/s11433-021-1732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1732-6

Keywords

Navigation