Skip to main content
Log in

Rehabilitative Exercise Training for Burn Injury

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Due to improvements in acute burn care over the last few decades, most patients with severe burns (up to 90% of the total body surface) survive. However, the metabolic and cardiovascular complications that accompany a severe burn can persist for up to 3 years post injury. Accordingly, there is now a greater appreciation of the need for strategies that can hasten recovery and reduce long-term morbidity post burn. Rehabilitation exercise training (RET) is a proven effective treatment to restore lean body mass, glucose and protein metabolism, cardiorespiratory fitness, and muscle strength in burn survivors. Despite this, very few hospitals incorporate RET in programs to aid the rehabilitation of patients with severe burns. Given that RET is a safe and efficacious treatment that restores function and reduces post-burn morbidity, we propose that a long-term exercise prescription plan should be considered for all patients with severe burns. In this literature review, we discuss the current understanding of burn trauma on major organ systems, and the positive benefits of incorporating RET as a part of the long-term rehabilitation of severely burned individuals. We also provide burn-specific exercise prescription guidelines for clinical exercise physiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization. Burns Fact Sheet. 2021. https://www.who.int/news-room/fact-sheets/detail/burns. Accessed 29 July 2021.

  2. Gibran NS, Wiechman S, Meyer W, Edelman L, Fauerbach J, Gibbons L, et al. Summary of the 2012 ABA Burn Quality Consensus conference. J Burn Care Res. 2013;34(4):361–85.

    PubMed  Google Scholar 

  3. Association AB. National Burn Repository, version 130. Chicago: American Burn Association; 2017.

    Google Scholar 

  4. Tegtmeyer LC, Herrnstadt GR, Maier SL, Thamm OC, Klinke M, Reinshagen K, et al. Retrospective analysis on thermal injuries in children-demographic, etiological and clinical data of German and Austrian pediatric hospitals 2006–2015-approaching the new German burn registry. Burns. 2018;44(1):150–7.

    PubMed  Google Scholar 

  5. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):11.

    PubMed  PubMed Central  Google Scholar 

  6. Long CL, Schaffel N, Geiger JW, Schiller WR, Blakemore WS. Metabolic response to injury and illness: estimation of energy and protein needs from indirect calorimetry and nitrogen balance. J Parenter Enteral Nutr. 1979;3(6):452–6.

    CAS  Google Scholar 

  7. Jeschke MG, Gauglitz GG, Kulp GA, Finnerty CC, Williams FN, Kraft R, et al. Long-term persistance of the pathophysiologic response to severe burn injury. PLoS ONE. 2011;6(7): e21245.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams FN, Herndon DN, Jeschke MG. The hypermetabolic response to burn injury and interventions to modify this response. Clin Plast Surg. 2009;36(4):583–96.

    PubMed  PubMed Central  Google Scholar 

  9. Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008;248(3):387–401.

    PubMed  Google Scholar 

  10. Cambiaso-Daniel J, Parry I, Rivas E, Kemp-Offenberg J, Sen S, Rizzo JA, et al. Strength and cardiorespiratory exercise rehabilitation for severely burned patients during intensive care units: a survey of practice. J Burn Care Res. 2018;39(6):897–901.

    PubMed  PubMed Central  Google Scholar 

  11. Diego AM, Serghiou M, Padmanabha A, Porro LJ, Herndon DN, Suman OE. Exercise training after burn injury: a survey of practice. J Burn Care Res. 2013;34(6):e311–7.

    PubMed  Google Scholar 

  12. Porter C, Hardee JP, Herndon DN, Suman OE. The role of exercise in the rehabilitation of patients with severe burns. Exerc Sport Sci Rev. 2015;43(1):34–40.

    PubMed  PubMed Central  Google Scholar 

  13. Hardee JP, Porter C, Sidossis LS, Borsheim E, Carson JA, Herndon DN, et al. Early rehabilitative exercise training in the recovery from pediatric burn. Med Sci Sports Exerc. 2014;46(9):1710–6.

    PubMed  PubMed Central  Google Scholar 

  14. Celis MM, Suman OE, Huang TT, Yen P, Herndon DN. Effect of a supervised exercise and physiotherapy program on surgical interventions in children with thermal injury. J Burn Care Rehabil. 2003;24(1):57–61 (Discussion 56).

    PubMed  Google Scholar 

  15. Cucuzzo NA, Ferrando A, Herndon DN. The effects of exercise programming vs traditional outpatient therapy in the rehabilitation of severely burned children. J Burn Care Rehabil. 2001;22(3):214–20.

    CAS  PubMed  Google Scholar 

  16. Rivas E, Herndon DN, Porter C, Meyer W, Suman OE. Short-term metformin and exercise training effects on strength, aerobic capacity, glycemic control, and mitochondrial function in children with burn injury. Am J Physiol Endocrinol Metab. 2017;314:E232–40.

    PubMed  PubMed Central  Google Scholar 

  17. Harden NG, Luster SH. Rehabilitation considerations in the care of the acute burn patient. Crit Care Nurs Clin. 1991;3(2):245–53.

    CAS  Google Scholar 

  18. Richard R, Staley M. Burn care and rehabilitation: principles and practice. Philadelphia: F.A. Davis; 1994.

    Google Scholar 

  19. Williams FN, Herndon DN, Suman OE, Lee JO, Norbury WB, Branski LK, et al. Changes in cardiac physiology after severe burn injury. J Burn Care Res. 2011;32(2):269–74.

    PubMed  Google Scholar 

  20. Gauglitz GG, Herndon DN, Kulp GA, Meyer WJ 3rd, Jeschke MG. Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab. 2009;94(5):1656–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Herndon DN, Rodriguez NA, Diaz EC, Hegde S, Jennings K, Mlcak RP, et al. Long-term propranolol use in severely burned pediatric patients: a randomized controlled study. Ann Surg. 2012;256(3):402–11.

    PubMed  Google Scholar 

  22. Duke JM, Randall SM, Fear MW, Boyd JH, Rea S, Wood FM. Understanding the long-term impacts of burn on the cardiovascular system. Burns. 2016;42(2):366–74.

    PubMed  Google Scholar 

  23. Porter C, Tompkins RG, Finnerty CC, Sidossis LS, Suman OE, Herndon DN. The metabolic stress response to burn trauma: current understanding and therapies. Lancet. 2016;388(10052):1417–26.

    PubMed  PubMed Central  Google Scholar 

  24. Diaz EC, Herndon DN, Lee J, Porter C, Cotter M, Suman OE, et al. Predictors of muscle protein synthesis after severe pediatric burns. J Trauma Acute Care Surg. 2015;78(4):816–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hart DW, Wolf SE, Chinkes DL, Lal SO, Ramzy PI, Herndon DN. Beta-blockade and growth hormone after burn. Ann Surg. 2002;236(4):450–6 (Discussion 6-7).

    PubMed  PubMed Central  Google Scholar 

  26. Bloomfield SA. Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc. 1997;29(2):197–206.

    CAS  PubMed  Google Scholar 

  27. Herndon DN, Ramzy PI, DebRoy MA, Zheng M, Ferrando AA, Chinkes DL, et al. Muscle protein catabolism after severe burn: effects of IGF-1/IGFBP-3 treatment. Ann Surg. 1999;229(5):713–20 (Discussion 20-2).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pereira C, Murphy K, Jeschke M, Herndon DN. Post burn muscle wasting and the effects of treatments. Int J Biochem Cell Biol. 2005;37(10):1948–61.

    CAS  PubMed  Google Scholar 

  29. Cambiaso-Daniel J, Malagaris I, Rivas E, Hundeshagen G, Voigt CD, Blears E, et al. Body composition changes in severely burned children during ICU hospitalization. Pediatr Crit Care Med. 2017;18(12):e598–605.

    PubMed  PubMed Central  Google Scholar 

  30. Przkora R, Barrow RE, Jeschke MG, Suman OE, Celis M, Sanford AP, et al. Body composition changes with time in pediatric burn patients. J Trauma. 2006;60(5):968–71 (Discussion 71).

    PubMed  Google Scholar 

  31. Wischmeyer PE, Suman OE, Kozar R, Wolf SE, Molinger J, Pastva AM. Role of anabolic testosterone agents and structured exercise to promote recovery in ICU survivors. Curr Opin Crit Care. 2020;26(5):508–15.

    PubMed  PubMed Central  Google Scholar 

  32. Tuvdendorj D, Chinkes DL, Zhang XJ, Suman OE, Aarsland A, Ferrando A, et al. Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery. 2011;149(5):645–53.

    PubMed  Google Scholar 

  33. Cambiaso-Daniel J, Rivas E, Carson JS, Hundeshagen G, Lopez ON, Glover SQ, et al. Cardiorespiratory capacity and strength remain attenuated in children with severe burn injuries at over 3 years postburn. J Pediatr. 2018;192:152–8.

    PubMed  PubMed Central  Google Scholar 

  34. Chao T, Herndon DN, Porter C, Chondronikola M, Chaidemenou A, Abdelrahman DR, et al. Skeletal muscle protein breakdown remains elevated in pediatric burn survivors up to one-year post-injury. Shock. 2015;44(5):397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang DW, DeSanti L, Demling RH. Anticatabolic and anabolic strategies in critical illness: a review of current treatment modalities. Shock. 1998;10(3):155–60.

    CAS  PubMed  Google Scholar 

  36. Edelman LS, McNaught T, Chan GM, Morris SE. Sustained bone mineral density changes after burn injury. J Surg Res. 2003;114(2):172–8.

    PubMed  Google Scholar 

  37. Klein GL. Burn-induced bone loss: importance, mechanisms, and management. J Burns Wounds. 2006;5: e5.

    PubMed  PubMed Central  Google Scholar 

  38. Rinkinen J, Hwang CD, Agarwal S, Oluwatobi E, Peterson J, Loder S, et al. The systemic effect of burn injury and trauma on muscle and bone mass and composition. Plast Reconstr Surg. 2015;136(5):612e-e623.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Benedetti MG, Furlini G, Zati A, Letizia MG. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int. 2018;2018:4840531.

    PubMed  PubMed Central  Google Scholar 

  40. Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol (1985). 2001;91(3):1168–75.

    CAS  Google Scholar 

  41. Suman OE, Mlcak RP, Herndon DN. Effect of exercise training on pulmonary function in children with thermal injury. J Burn Care Rehabil. 2002;23(4):288–93 (Discussion 7).

    PubMed  Google Scholar 

  42. Suman OE, Herndon DN. Effects of cessation of a structured and supervised exercise conditioning program on lean mass and muscle strength in severely burned children. Arch Phys Med Rehabil. 2007;88(12 Suppl 2):S24–9.

    PubMed  Google Scholar 

  43. Clayton RP, Wurzer P, Andersen CR, Mlcak RP, Herndon DN, Suman OE. Effects of different duration exercise programs in children with severe burns. Burns. 2017;43(4):796–803. https://doi.org/10.1016/j.burns.2016.11.004.

    Article  PubMed  Google Scholar 

  44. Wurzer P, Voigt CD, Clayton RP, Andersen CR, Mlcak RP, Kamolz LP, et al. Long-term effects of physical exercise during rehabilitation in patients with severe burns. Surgery. 2016;160(3):781–8.

    PubMed  Google Scholar 

  45. Przkora R, Herndon DN, Suman OE. The effects of oxandrolone and exercise on muscle mass and function in children with severe burns. Pediatrics. 2007;119(1):e109–16.

    PubMed  Google Scholar 

  46. Suman OE, Thomas SJ, Wilkins JP, Mlcak RP, Herndon DN. Effect of exogenous growth hormone and exercise on lean mass and muscle function in children with burns. J Appl Physiol (1985). 2003;94(6):2273–81.

    CAS  Google Scholar 

  47. Rivas E, Herndon DN, Cambiaso-Daniel J, Rontoyanni VG, Porter C, Glover S, et al. Quantification of an exercise rehabilitation program for severely burned children: the standard of care at Shriners Hospitals for Children(R)-Galveston. J Burn Care Res. 2018;39(6):889–96.

    PubMed  PubMed Central  Google Scholar 

  48. Romero SA, Moralez G, Jaffery MF, Huang M, Cramer MN, Romain N, et al. Progressive exercise training improves maximal aerobic capacity in individuals with well-healed burn injuries. Am J Physiol Regul Integr Comp Physiol. 2019;317(4):R563–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rivas E, Sanchez K, Cambiaso-Daniel J, Gutierrez IL, Tran J, Herndon DN, et al. Burn injury may have age-dependent effects on strength and aerobic exercise capacity in males. J Burn Care Res. 2018;39(5):815–22.

    PubMed  Google Scholar 

  50. Al-Mousawi AM, Williams FN, Mlcak RP, Jeschke MG, Herndon DN, Suman OE. Effects of exercise training on resting energy expenditure and lean mass during pediatric burn rehabilitation. J Burn Care Res. 2010;31(3):400–8.

    PubMed  Google Scholar 

  51. Gauglitz GG, Herndon DN, Jeschke MG. Insulin resistance postburn: underlying mechanisms and current therapeutic strategies. J Burn Care Res. 2008;29(5):683–94.

    PubMed  Google Scholar 

  52. Rontoyanni VG, Malagaris I, Herndon DN, Rivas E, Capek KD, Delgadillo AD, et al. Skeletal muscle mitochondrial function is determined by burn severity, sex, and sepsis, and is associated with glucose metabolism and functional capacity in burned children. Shock. 2018;50(2):141–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rivas E, Herndon DN, Porter C, Meyer W, Suman OE. Short-term metformin and exercise training effects on strength, aerobic capacity, glycemic control, and mitochondrial function in children with burn injury. Am J Physiol Endocrinol Metab. 2018;314(3):E232–40.

    PubMed  Google Scholar 

  54. Wilmore DW, Long JM, Mason AD Jr, Skreen RW, Pruitt BA Jr. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974;180(4):653–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bak Z, Sjoberg F, Eriksson O, Steinvall I, Janerot-Sjoberg B. Cardiac dysfunction after burns. Burns. 2008;34(5):603–9.

    CAS  PubMed  Google Scholar 

  56. Randall SM, Fear MW, Wood FM, Rea S, Boyd JH, Duke JM. Long-term musculoskeletal morbidity after adult burn injury: a population-based cohort study. BMJ Open. 2015;5(9): e009395.

    PubMed  PubMed Central  Google Scholar 

  57. Whitener DR, Whitener LM, Robertson KJ, Baxter CR, Pierce AK. Pulmonary function measurements in patients with thermal injury and smoke inhalation. Am Rev Respir Dis. 1980;122(5):731–9.

    CAS  PubMed  Google Scholar 

  58. Willis CE, Grisbrook TL, Elliott CM, Wood FM, Wallman KE, Reid SL. Pulmonary function, exercise capacity and physical activity participation in adults following burn. Burns. 2011;37(8):1326–33.

    CAS  PubMed  Google Scholar 

  59. Mlcak R, Desai MH, Robinson E, Nichols R, Herndon DN. Lung function following thermal injury in children–an 8-year follow up. Burns. 1998;24(3):213–6.

    CAS  PubMed  Google Scholar 

  60. American College of Sports Medicine, Liguori G, Feito Y, Fountaine C, Roy B. ACSM’s guidelines for exercise testing and prescription. 11th ed. Philadelphia: Wolters Kluwer; 2021.

    Google Scholar 

  61. Ganio MS, Pearson J, Schlader ZJ, Brothers RM, Lucas RA, Rivas E, et al. Aerobic fitness is disproportionately low in adult burn survivors years after injury. J Burn Care Res. 2015;36(4):513–9.

    PubMed  Google Scholar 

  62. Pena R, Ramirez LL, Crandall CG, Wolf SE, Herndon DN, Suman OE. Effects of community-based exercise in children with severe burns: a randomized trial. Burns. 2016;42(1):41–7.

    PubMed  Google Scholar 

  63. Voigt CD, Foncerrada G, Pena R, Guillory AN, Andersen CR, Crandall CG, et al. Effects of community-based exercise in adults with severe burns: a randomized controlled trial. Arch Phys Med Rehabil. 2020;101(1S):S36–41.

    PubMed  Google Scholar 

  64. Grisbrook TL, Wallman KE, Elliott CM, Wood FM, Edgar DW, Reid SL. The effect of exercise training on pulmonary function and aerobic capacity in adults with burn. Burns. 2012;38(4):607–13.

    CAS  PubMed  Google Scholar 

  65. Birke G, Carlson LA, von Euler US, Liljedahl SO, Plantin LO. Studies on burns. XII. Lipid metabolism, catecholamine excretion, basal metabolic rate, and water loss during treatment of burns with warm dry air. Acta Chir Scand. 1972;138(4):321–33.

    CAS  PubMed  Google Scholar 

  66. Wilmore DW, Mason AD Jr, Johnson DW, Pruitt BA Jr. Effect of ambient temperature on heat production and heat loss in burn patients. J Appl Physiol. 1975;38(4):593–7.

    CAS  PubMed  Google Scholar 

  67. Kelemen JJ 3rd, Cioffi WG Jr, Mason AD Jr, Mozingo DW, McManus WF, Pruitt BA Jr. Effect of ambient temperature on metabolic rate after thermal injury. Ann Surg. 1996;223(4):406–12.

    PubMed  PubMed Central  Google Scholar 

  68. Porter C, Herndon DN, Borsheim E, Chao T, Reidy PT, Borack MS, et al. Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults. Am J Physiol Endocrinol Metab. 2014;307(5):E462–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22(2):219–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rivas E, McEntire SJ, Herndon DN, Suman OE. Resting β-adrenergic blockade does not alter exercise thermoregulation in children with burn Injury: a randomized control trial. J Burn Care Res. 2018;39(3):402–12.

    PubMed  PubMed Central  Google Scholar 

  71. Davis SL, Shibasaki M, Low DA, Cui J, Keller DM, Purdue GF, et al. Skin grafting impairs postsynaptic cutaneous vasodilator and sweating responses. J Burn Care Res. 2007;28(3):435–41.

    PubMed  Google Scholar 

  72. Davis SL, Shibasaki M, Low DA, Cui J, Keller DM, Purdue GF, et al. Impaired cutaneous vasodilation and sweating in grafted skin during whole-body heating. J Burn Care Res. 2007;28(3):427–34.

    PubMed  Google Scholar 

  73. McEntire SJ, Lee JO, Herndon DN, Suman OE. Absence of exertional hyperthermia in a 17-year-old boy with severe burns. J Burn Care Res. 2009;30(4):752–5.

    PubMed  Google Scholar 

  74. McGibbon B, Beaumont WV, Strand J, Paletta FX. Thermal regulation in patients after the healing of large deep burns. Plast Reconstr Surg. 1973;52(2):164–70.

    CAS  PubMed  Google Scholar 

  75. Shapiro Y, Epstein Y, Ben-Simchon C, Tsur H. Thermoregulatory responses of patients with extensive healed burns. J Appl Physiol. 1982;53(4):1019–22.

    CAS  PubMed  Google Scholar 

  76. Ferguson JC, Martin CJ. A study of skin temperatures, sweat rate and heat loss for burned patients. Clin Phys Physiol Meas. 1991;12(4):367–75.

    CAS  PubMed  Google Scholar 

  77. Henane R, Bittel J, Banssillon V. Partitional calorimetry measurements of energy exchanges in severely burned patients. Burns. 1981;7(3):180–9.

    Google Scholar 

  78. Wilson TE, Cui J, Crandall CG. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans. Auton Neurosci Basic Clin. 2002;97(2):122–8.

    Google Scholar 

  79. Pearson J, Ganio MS, Schlader ZJ, Lucas RA, Gagnon D, Rivas E, et al. Post junctional sudomotor and cutaneous vascular responses in noninjured skin following heat acclimation in burn survivors. J Burn Care Res. 2016;38:e284–92.

    Google Scholar 

  80. Ganio MS, Schlader ZJ, Pearson J, Lucas RA, Gagnon D, Rivas E, et al. Nongrafted skin area best predicts exercise core temperature responses in burned humans. Med Sci Sports Exerc. 2015;47(10):2224–32.

    PubMed  PubMed Central  Google Scholar 

  81. Schlader ZJ, Ganio MS, Pearson J, Lucas RA, Gagnon D, Rivas E, et al. Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts. J Appl Physiol (1985). 2015;119(1):69–76.

    Google Scholar 

  82. Ganio MS, Gagnon D, Stapleton J, Crandall CG, Kenny GP. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report. J Burn Care Res. 2013;34(4):e263-70.

    PubMed  Google Scholar 

  83. McEntire SJ, Herndon DN, Sanford AP, Suman OE. Thermoregulation during exercise in severely burned children. Pediatr Rehabil. 2006;9(1):57–64.

    CAS  PubMed  Google Scholar 

  84. McEntire SJ, Chinkes DL, Herndon DN, Suman OE. Temperature responses in severely burned children during exercise in a hot environment. J Burn Care Res. 2010;31(4):624–30.

    PubMed  Google Scholar 

  85. Crandall CG, Matthew NC, Huang M, Moralez G, Belval L, Watso JC, Fischer M. Burn survivors can exercise for 30 min, even in the heat, without a risk of excessive hyperthermia. J Burn Care Res. 2020;41(Issue Supplement_1):S48–9.

    Google Scholar 

  86. Schlader ZJ, Ganio MS, Pearson J, Lucas RAI, Gagnon D, Rivas E, et al. Heat acclimation improves heat exercise tolerance and heat dissipation in individuals with extensive skin grafts. J Appl Physiol. 2015;119(1):69–76.

    PubMed  PubMed Central  Google Scholar 

  87. de Lateur BJ, Magyar-Russell G, Bresnick MG, Bernier FA, Ober MS, Krabak BJ, et al. Augmented exercise in the treatment of deconditioning from major burn injury. Arch Phys Med Rehabil. 2007;88(12 Suppl 2):S18-23.

    PubMed  Google Scholar 

  88. Neugebauer CT, Serghiou M, Herndon DN, Suman OE. Effects of a 12-week rehabilitation program with music and exercise groups on range of motion in young children with severe burns. J Burn Care Res. 2008;29(6):939–48.

    PubMed  Google Scholar 

  89. Simons M, King S, Edgar D, ANZBA. Occupational therapy and physiotherapy for the patient with burns: principles and management guidelines. J Burn Care Rehabil. 2003;24(5):323–35.

    CAS  PubMed  Google Scholar 

  90. Cheng S, Rogers JC. Changes in occupational role performance after a severe burn: a retrospective study. Am J Occup Ther. 1989;43(1):17–24.

    CAS  PubMed  Google Scholar 

  91. Rosenberg M, Celis MM, Meyer W 3rd, Tropez-Arceneaux L, McEntire SJ, Fuchs H, et al. Effects of a hospital based wellness and exercise program on quality of life of children with severe burns. Burns. 2013;39(4):599–609.

    PubMed  Google Scholar 

  92. Suman OE, Spies RJ, Celis MM, Mlcak RP, Herndon DN. Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries. J Appl Physiol. 2001;91(3):1168–75.

    CAS  PubMed  Google Scholar 

  93. Grisbrook TL, Elliott CM, Edgar DW, Wallman KE, Wood FM, Reid SL. Burn-injured adults with long term functional impairments demonstrate the same response to resistance training as uninjured controls. Burns. 2013;39(4):680–6.

    CAS  PubMed  Google Scholar 

  94. Ebid AA, Omar MT, El-Baky AMA. Effect of 12-week isokinetic training on muscle strength in adult with healed thermal burn. Burns. 2012;38(1):61–8.

    PubMed  Google Scholar 

  95. Grisbrook TL, Reid SL, Edgar DW, Wallman KE, Wood FM, Elliott CM. Exercise training to improve health related quality of life in long term survivors of major burn injury: a matched controlled study. Burns. 2012;38(8):1165–73.

    CAS  PubMed  Google Scholar 

  96. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30(6):975–91.

    Google Scholar 

  97. Baldwin J, Li F. Exercise behaviors after burn injury. J Burn Care Res. 2013;34(5):529–36.

    PubMed  Google Scholar 

  98. Evangelista LS, Cacciata M, Stromberg A, Dracup K. Dose-response relationship between exercise intensity, mood states, and quality of life in patients with heart failure. J Cardiovasc Nurs. 2017;32(6):530–7.

    PubMed  PubMed Central  Google Scholar 

  99. Foulds HJ, Bredin SS, Charlesworth SA, Ivey AC, Warburton DE. Exercise volume and intensity: a dose-response relationship with health benefits. Eur J Appl Physiol. 2014;114(8):1563–71.

    PubMed  Google Scholar 

  100. Huang G, Wang R, Chen P, Huang SC, Donnelly JE, Mehlferber JP. Dose-response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur J Prev Cardiol. 2016;23(5):518–29.

    PubMed  Google Scholar 

  101. Scribbans TD, Vecsey S, Hankinson PB, Foster WS, Gurd BJ. The effect of training intensity on VO2max in young healthy adults: a meta-regression and meta-analysis. Int J Exerc Sci. 2016;9(2):230–47.

    PubMed  PubMed Central  Google Scholar 

  102. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–81.

    PubMed  Google Scholar 

  103. Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S364-9.

    CAS  PubMed  Google Scholar 

  104. Borg GA. Perceived exertion. Exerc Sport Sci Rev. 1974;2:131–53.

    CAS  PubMed  Google Scholar 

  105. Roemmich JN, Barkley JE, Epstein LH, Lobarinas CL, White TM, Foster JH. Validity of PCERT and OMNI walk/run ratings of perceived exertion. Med Sci Sports Exerc. 2006;38(5):1014–9.

    PubMed  Google Scholar 

  106. Tapking C, Popp D, Herndon DN, Armenta AM, Branski LK, Murton AJ, et al. Cardiovascular effect of varying interval training frequency in rehabilitation of reverely burned children. J Burn Care Res. 2019;40(1):34–8.

    PubMed  Google Scholar 

  107. Rivas E, Tran J, Gutierrez IL, Chapa M, Herndon DN, Suman OE. Rehabilitation exercise increases physical activity levels in severely burned children while improving aerobic exercise capacity and Strength. J Burn Care Res. 2018;39(6):881–6.

    PubMed  Google Scholar 

  108. Sisson SB, Camhi SM, Tudor-Locke C, Johnson WD, Katzmarzyk PT. Characteristics of step-defined physical activity categories in US adults. Am J Health Promot. 2012;26(3):152–9.

    PubMed  Google Scholar 

  109. Paratz JD, Stockton K, Plaza A, Muller M, Boots RJ. Intensive exercise after thermal injury improves physical, functional, and psychological outcomes. J Trauma Acute Care Surg. 2012;73(1):186–94.

    PubMed  Google Scholar 

  110. Ebid AA, Omar MTA, Baky AMAE. Effect of 12-week isokinetic training on muscle strength in adult with healed thermal burn. Burns. 2012;38(1):61–8.

    PubMed  Google Scholar 

  111. Gittings PM, Grisbrook TL, Edgar DW, Wood FM, Wand BM, O’Connell NE. Resistance training for rehabilitation after burn injury: a systematic literature review and meta-analysis. Burns. 2018;44(4):731–51.

    PubMed  Google Scholar 

  112. Gittings PM, Wand BM, Hince DA, Grisbrook TL, Wood FM, Edgar DW. The efficacy of resistance training in addition to usual care for adults with acute burn injury: a randomised controlled trial. Burns. 2021;47(1):84–100. https://doi.org/10.1016/j.burns.2020.03.015.

    Article  PubMed  Google Scholar 

  113. Ahmed ET, Abdel-Aziem AA, Ebid AA. Effect of isokinetic training on quadriceps peak torque in healthy subjects and patients with burn injury. J Rehabil Med. 2011;43(10):930–4.

    PubMed  Google Scholar 

  114. Hornsby WG, Gentles JA, Comfort P, Suchomel TJ, Mizuguchi S, Stone MH. Resistance training volume load with and without exercise displacement. Sports (Basel). 2018;6(4):137.

    PubMed Central  Google Scholar 

  115. Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2):132–42 (Discussion 42-4).

    CAS  PubMed  Google Scholar 

  116. Wurzer P, Voigt CD, Clayton RP, Andersen CR, Mlcak RP, Kamolz LP, et al. Long-term effects of physical exercise during rehabilitation in patients with severe burns. Surgery (United States). 2016;160(3):781–8.

    Google Scholar 

  117. Tapking C, Popp D, Herndon DN, Branski LK, Mlcak RP, Suman OE. Estimated versus achieved maximal oxygen consumption in severely burned children maximal oxygen consumption in burned children. Burns. 2018;44(8):2026–33.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sherry Haller for editing and proofreading the manuscript. This article does not reflect the opinion of the US Department of Defense or the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Rivas.

Ethics declarations

Funding

Department of Defense: W81XWH-15-1-0143, W81XWH-14-2-0160, W81XWH-15-1-0647 and National Institutes of Health R01HD049471, and GM068865.

Conflicts of interest/Competing interests

Alen Palackic, Oscar E. Suman, Craig Porter, Andrew J. Murton, Craig Crandall, and Eric Rivas declare that they have no conflicts of interest relevant to the content of this review.

Availability of data and material

Not applicable.

Code availability

Not applicable

Authors' contributions

All authors contributed equally to the writing of this manuscript and read and approved the final manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palackic, A., Suman, O.E., Porter, C. et al. Rehabilitative Exercise Training for Burn Injury. Sports Med 51, 2469–2482 (2021). https://doi.org/10.1007/s40279-021-01528-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01528-4

Navigation