Skip to main content
Log in

A mixed norm constraint IPNLMS algorithm for sparse channel estimation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel approach for structure extraction of the cluster sparse system identification. Different from adopting \(\ell _1\)-norm constraint to regularize the sparsity in the improved proportionate normalized least mean square (IPNLMS) algorithm, we directly work with the block sparse structure via \(\ell _{1,0}\)-norm constraint. In particular, we develop a cluster sparse IPNLMS by the block \(\ell _0\) norm regularization, named IPNLMS-BL0 method. The cluster sparse constraint is regarded as an extended version for the sparse constraint term. On the other hand, the iterations of IPNLMS-BL0 are derived by the steepest descent strategy. Then, we provide the analysis of block size choices of the cluster sparse constraint, computational complexity, and steady-state error of the proposed method. Various simulations are designed to test the performance of the IPNLMS-BL0 algorithm and its counterparts to identify and track the unknown sparse systems. The results are provided and analyzed to confirm the effectiveness and superiority of the proposed IPNLMS-BL0 algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  2. Duttweiler, D.L.: Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000)

    Article  Google Scholar 

  3. Benesty, J., Paleologu, C., Ciochina, S.: Proportionate adaptive filters from a basis pursuit perspective. IEEE Signal Process. Lett. 17(12), 985–988 (2010)

    Article  Google Scholar 

  4. Benesty, J., Gay, S.L.: An improved PNLMS algorithm. In: Proceedings of IEEE ICASSP, pp. 1881–1884 (2002)

  5. Cui, J., Naylor, P., Brown, D.: An improved IPNLMS algorithm for echo cancellation in packet-switched networks. In: Proceedings of EEE International Conference on Acoustics, Speech, Signal Process. (ICASSP04), Montreal, QC, Canada, pp. 141–144 (2004)

  6. Zhu, X., Li, X., Zhang, S.: Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cyber. 46(2), 450–461 (2016)

    Article  Google Scholar 

  7. Brbic, M., Kopriva, I.: \(\ell _0\)-Motivated low-rank sparse subspace clustering. IEEE Trans. Cyber. 50(4), 1711–1725 (2020)

    Article  Google Scholar 

  8. Angelosante, D., Bazerque, J.A., Giannakis, G.B.: Online adaptive estimation of sparse signals: where RLS meets the \(\ell _1\)-norm. IEEE Trans. Signal Process. 58(7), 3436–3447 (2010)

    Article  MathSciNet  Google Scholar 

  9. Hong, X., Gao, J., Chen, S.: Zero attracting recursive least square algorithms. IEEE Trans. Veh. Technol. 66(1), 213–221 (2017)

    Google Scholar 

  10. Wu, F.Y., Yang, K., Duan, R., Tian, T.: Compressive sampling and reconstruction of acoustic signal in underwater wireless sensor networks. IEEE Sens. J. 18(14), 5876–5884 (2018)

    Article  Google Scholar 

  11. Eksioglu, E.M., Tanc, A.K.: RLS algorithm with convex regularization. IEEE Signal Process. Lett. 18(8), 470–473 (2011)

    Article  Google Scholar 

  12. Jahromi, M.N., Salman, M.S., Hocanin, A., Kukrer, O.: Mean-square deviation analysis of the zero-attracting variable step-size LMS algorithm. Signal Image Video Process. 11(3), 533–540 (2017)

    Article  Google Scholar 

  13. Chen, B., Wan, A.: General RIP bounds of \(\delta _{tk}\) for sparse signals recovery by \(\ell _p\) minimization. Neurocomputing 363, 306–312 (2019)

    Article  Google Scholar 

  14. Sun, Y., Lei, L., Li, X., Li, M., Kuang, G.: A robust recovery algorithm with smoothing strategies. Neurocomputing 371, 51–66 (2020)

    Article  Google Scholar 

  15. Zha, Z., Zhang, X., Wang, Q., Tang, L., Liu, X.: Group-based sparse representation for image compressive sensing reconstruction with non-convex regularization. Neurocomputing 296, 55–63 (2018)

    Article  Google Scholar 

  16. Wu, F.Y., Yang, K., Tong, F., Tian, T.: Compressed sensing of delay and Doppler spreading in underwater acoustic channels. IEEE Access. 6, 36031–36038 (2018)

    Article  Google Scholar 

  17. Jiang, S., Gu, Y.: Block-sparsity-induced adaptive filter for multiclustering system identification. IEEE Trans. Signal Process. 63(20), 5318–5330 (2015)

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Jiang, Z., Shi, W., Han, X., Chen, B.D.: Blocked maximum correntropy criterion algorithm for block-sparse system identification. IEEE Trans. Circuits Syst. II Exp. Briefs 66(11), 1915–1919 (2019)

    Article  Google Scholar 

  19. Paleologu, C., Benesty, J., Ciochina, S.: An improved proportionate NLMS algorithm based on \(\ell _0\) norm. In: Proceedings of IEEE ICASSP, pp. 309–312 (2010)

  20. Gay, S.L., Douglas, S.C.: Normalized natural gradient adaptive filtering for sparse and non-sparse systems. In: Proceedings of IEEE International Conference on Acoustics Speech Signal Processing, pp. 1405–1408 (2002)

  21. Martin, R.K., Sethares, W.A., Williamson, R.C., Johnson, C.R.: Exploiting sparsity in adaptive filters. IEEE Trans. Signal Process. 50(8), 1883–1894 (2002)

    Article  Google Scholar 

  22. Li, Y., Jiang, Z., Osman, O.M.O., Han, X., Yin, J.W.: Mixed norm constrained sparse APA algorithm for satellite and network echo channel estimation. IEEE Access 6, 65901–65908 (2018)

    Article  Google Scholar 

  23. Liu, J., Grant, S.L.: Proportionate adaptive filtering for block sparse system identification. IEEE/ACM Trans. Audio Speech Lang. Process. 24(4), 623–630 (2016)

    Article  Google Scholar 

  24. Liu, J., Grant, S.L.: Block sparse memory improved proportionate affine projection sign algorithm. Electron. Lett 51(24), 2001–2003 (2015)

    Article  Google Scholar 

  25. Jin, Z., Li, Y., Liu, J.: An improved set-membership proportionate adaptive algorithm for a block-sparse system. Symmetry 10(3), 1–15 (2018)

    Article  Google Scholar 

  26. Wu, F.Y., Yang, K., Hu, Y.: Sparse estimator with \(\ell _0\)-norm constraint kernel maximum correntropy criterion. IEEE Trans. Circuits Systems II Express Briefs 67(2), 400–404 (2020)

    Article  Google Scholar 

  27. Tian, T., Wu, F.Y., Yang, K.D.: Block-sparsity regularized maximum correntropy criterion for structured-sparse system identification. J. Frank. Inst. 357(17), 12960–12985 (2020)

    Article  MathSciNet  Google Scholar 

  28. Wu, F.Y., Yang, K., Sheng, X., Huang, F.: A blocked MCC estimator for group sparse system identification. Int. J. Electron. Commun. 115, 153033–153038 (2020)

    Article  Google Scholar 

  29. Pelekanakis, K., Chitre, M.: Natural gradient-based adaptive algorithms for sparse underwater acoustic channel identification. In: Proceedings of 4th Underwater Acoustics and Measurements Conference, Kos Island, Greece, pp. 1403–1410 (2011)

  30. Pelekanakis, K., Chitre, M.: New sparse adaptive algorithms based on the natural gradient and the \(\ell _0\)-norm. IEEE J. Ocean. Eng. 38(2), 323–332 (2013)

    Article  Google Scholar 

  31. Wagner, K., Doroslovacki, M.: Towards analytical convergence analysis of proportion-type NLMS algorithms. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3825–3828 (2008)

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Project No. 61701405), in part by the Fundamental Research Funds for the Central Universities (Project No. 3102019HHZY030022), in part by Natural Science Basic Research Plan in Shaanxi Province of China (Project No. 2019JQ463), in part by Stable Supporting Fund of Acoustic Science and Technology Laboratory, Harbin Engineering University (Project No. JCKYS2019604SSJS014), and in part by China Postdoctoral Science Foundation (Project No. 2019T120957).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei-Yun Wu or Kunde Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, FY., Song, YC., Tian, T. et al. A mixed norm constraint IPNLMS algorithm for sparse channel estimation. SIViP 16, 457–464 (2022). https://doi.org/10.1007/s11760-021-01975-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01975-6

Keywords

Navigation