Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Evaluation of the supramolecular structure of drug delivery carriers using synchrotron X-ray scattering

Abstract

The physicochemical properties of drug carriers are closely associated with their biological properties, and their detailed analysis is essential for the development of the field of drug delivery systems (DDSs). Synchrotron small-angle X-ray scattering (SAXS) provides accurate nanoscale structural information about drug carriers in solution. This review introduces the structural analysis of three recent types of drug carriers, polyethylene glycol-modified liposomes (PEG-liposomes), cationic liposomes, and microemulsions. First, the quantitative evaluation of PEG chains on the surface of a liposome with a contrast variation technique in SAXS was described. Second, we introduced the localization analysis of glutathione molecules in cationic liposomes with SAXS and showed that the size of the inner phase of the liposome had the greatest effect on the loading amount of glutathione rather than the adsorption of glutathione on the surface of the cationic liposomes. The final section covered microemulsions containing deep eutectic solvents in the inner phase of transdermal DDSs. The structure, drug loading amount, and skin penetration amount of the microemulsion were evaluated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyner KM. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12:523–9.

    Article  PubMed  Google Scholar 

  2. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.

    Article  CAS  PubMed  Google Scholar 

  3. Caputo F, Clogston J, Calzolai L, Rösslein M, Prina-Mello A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Controlled Release. 2019;299:31–43.

    Article  CAS  Google Scholar 

  4. Gioria S, Caputo F, Urbán P, Maguire CM, Bremer-Hoffmann S, Prina-Mello A, et al. Are existing standard methods suitable for the evaluation of nanomedicines: Some case studies. Nanomedicine 2018;13:539–54.

    Article  CAS  PubMed  Google Scholar 

  5. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soo Choi H, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70.

    Article  Google Scholar 

  7. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imagin agents: consideration and caveats. Nanomedicine 2008;3:703–17.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm. 2008;346:143–50.

    Article  CAS  PubMed  Google Scholar 

  9. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Black KCL, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 2014;8:4385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA. 2006;103:4930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution–a perspective on light scattering and comparative technologies. Sci Technol Adv Mater. 2018;19:732–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C. Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res. 2016;33:1220–34.

    Article  CAS  PubMed  Google Scholar 

  14. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B: Biointerfaces. 2011;87:146–50.

    Article  CAS  PubMed  Google Scholar 

  15. Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116:11128–80.

    Article  CAS  PubMed  Google Scholar 

  16. Sanada Y, Akiba I, Hashida S, Sakurai K, Shiraishi K, Yokoyama M, et al. Composition dependence of the micellar architecture made from poly(ethylene glycol)- block -poly(partially benzyl-esterified aspartic acid). J Phys Chem B. 2012;116:8241–50.

    Article  CAS  PubMed  Google Scholar 

  17. Shiraishi K, Sanada Y, Mochizuki S, Kawano K, Maitani Y, Sakurai K, et al. Determination of polymeric micelles’ structural characteristics, and effect of the characteristics on pharmacokinetic behaviors. J Controlled Release. 2015;203:77–84.

    Article  CAS  Google Scholar 

  18. Doan VTH, Lee JH, Takahashi R, Nguyen PTM, Nguyen VAT, Pham HTT, et al. Cyclodextrin-based nanoparticles encapsulating α-mangostin and their drug release behavior: potential carriers of α-mangostin for cancer therapy. Polym J. 2020;52:457–66.

    Article  CAS  Google Scholar 

  19. Sakurai K, Takenaka M, Tanaka K. Special issue: cutting edge of scattering from softmaterials. Polym J. 2019;51:107.

    Article  CAS  Google Scholar 

  20. Abe K, Higashi K, Watabe K, Kobayashi A, Limwikrant W, Yamamoto K, et al. Effects of the PEG molecular weight of a PEG-lipid and cholesterol on PEG chain flexibility on liposome surfaces. Colloids Surf A: Physicochem Eng Asp. 2015;474:63–70.

    Article  CAS  Google Scholar 

  21. Tirosh O, Barenholz Y, Katzhendler J, Priev A. Hydration of polyethylene glycol-grafted liposomes. Biophys J. 1998;74:1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dos Santos N, Allen C, Doppen AM, Anantha M, Cox KAK, Gallagher RC, et al. Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: relating plasma circulation lifetimes to protein binding. Biochim Biophys Acta 2007;1768:1367–77.

    Article  PubMed  Google Scholar 

  23. Kawaguchi T, Hamanaka T, Kito Y, Machida H. Structural studies of a homologous series of alkyl sucrose ester micelle by x-ray scattering. J Phys Chem. 1991;95:3837–46.

    Article  CAS  Google Scholar 

  24. Okamoto Y, Taguchi K, Yamasaki K, Sakuragi M, Kuroda S, Otagiri M. Albumin-encapsulated liposomes: a novel drug delivery carrier with hydrophobic drugs encapsulated in the inner aqueous core. J Pharm Sci. 2018;107:436–45.

    Article  CAS  PubMed  Google Scholar 

  25. Okamoto Y, Taguchi K, Sakuragi M, Imoto S, Yamasaki K, Otagiri M. Preparation, characterization, and in vitro/in vivo evaluation of paclitaxel-bound albumin-encapsulated liposomes for the treatment of pancreatic cancer. ACS Omega. 2019;4:8693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujii S, Sakuragi M, Sakurai K. Characterizing PEG chains tethered onto micelles and liposomes applied as drug delivery vehicles using scattering techniques. ACS Symp Ser. 2017;1271:115–29.

    Article  CAS  Google Scholar 

  27. Sakuragi M, Koiwai K, Nakamura K, Masunaga H, Ogawa H, Sakurai K. Transformation from multilamellar to unilamellar vesicles by addition of a cationic lipid to pegylated liposomes explored with synchrotron small angle x-ray scattering. J Phys Confer Ser. 2011;272:012011.

    Article  Google Scholar 

  28. Putnam CD, Hammel M, Hura GL, Tainer JA. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys. 2007;40:191–285.

    Article  CAS  PubMed  Google Scholar 

  29. Osborne HB, Sardet C, Michel-Villaz M, Chabre M. Structural study of rhodopsin in detergent micelles by small-angle neutron scattering. J Mol Biol. 1978;123:177–206.

    Article  CAS  PubMed  Google Scholar 

  30. Pedersen JS, Svaneborg C, Almdal K, Hamley IW, Young RN. A small-angle neutron and x-ray contrast variation scattering study of the structure of block copolymer micelles: Corona shape and excluded volume interactions. Macromolecules 2003;36:416–33.

    Article  CAS  Google Scholar 

  31. Feigin LA, Svergun DI. Structure analysis by small-angle X-ray and neutron scattering. US: Springer; 1987.

  32. Glatter O, Kratky O, Kratky HC. Small angle x-ray scattering. London: Academic Press; 1982.

  33. Koiwai K, Tokuhisa K, Karinaga R, Kudo Y, Kusuki S, Takeda Y, et al. Transition from a normal to inverted cylinder for an amidine-bearing lipid/pDNA complex and its excellent transfection. Bioconjugate Chem. 2005;16:1349–51.

    Article  CAS  Google Scholar 

  34. Kawahara K, Sekiguchi A, Kiyoki E, Ueda T, Shimamura K, Kurosaki Y, et al. Effect of TRX-liposomes size on their prolonged circulation in rats. Chem Pharm Bull. 2003;51:336–8.

    Article  CAS  Google Scholar 

  35. Roe RJ. Methods of X-ray and neutron scattering in polymer. Oxford: Oxford University Press; 2000.

  36. Svaneborg C, Pedersen JS. Form factors of block copolymer micelles with excluded-volume interactions of the corona chains determined by Monte Carlo simulations. Macromolecules 2002;35:1028–37.

    Article  CAS  Google Scholar 

  37. Fukuda I, Mochizuki S, Sakurai K. Competition of PEG coverage density and con-A recognition in mannose/PEG bearing nanoparticles. Colloids Surf B Biointerfaces. 2016;146:642–8.

    Article  CAS  PubMed  Google Scholar 

  38. Suntres ZE. Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol. 2011;2011:1–16.

    Article  Google Scholar 

  39. Rhieu SY, Urbas AA, Bearden DW, Marino JP, Lippa KA, Reipa V. Probing the intracellular glutathione redox potential by In-Cell NMR spectroscopy. Angew Chem Int Ed. 2014;53:447–50.

    Article  CAS  Google Scholar 

  40. Yang H, Paromov V, Smith M, Stone WL. Preparation, characterization, and use of antioxidant-liposomes BT - advanced protocols in oxidative stress I. Methods Mol Biol. 2008;477:277–92.

    Article  CAS  PubMed  Google Scholar 

  41. Jurima-Romet M, Barber RF, Demeester J, Shek PN. Distribution studies of liposome-encapsulated glutathione administered to the lung. Int J Pharm. 1990;63:227–35.

    Article  CAS  Google Scholar 

  42. Paromov V, Kumari S, Brannon M, Kanaparthy NS, Yang H, Smith MG, et al. Protective effect of liposome-encapsulated glutathione in a human epidermal model exposed to a mustard gas analog. J Toxicol. 2011;2011:1–11.

    Article  Google Scholar 

  43. Sinha R, Sinha I, Calcagnotto A, Trushin N, Haley JS, Schell TD, et al. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr. 2018;72:105–11.

    Article  CAS  PubMed  Google Scholar 

  44. Sakuragi M, Zushi T, Seguchi R, Arai T, Taguchi K, Kusakabe K. Locational analysis of glutathione in liposomes by using small-angle X-ray scattering. Chem Lett. 2017;46:185–7.

    Article  CAS  Google Scholar 

  45. Akashi K, Miyata H, Itoh H, Kinoshita K. Formation of giant liposomes promoted by divalent cations: critical role of electrostatic repulsion. Biophysical J. 1998;74:2973–82.

    Article  CAS  Google Scholar 

  46. Aburai K, Ogura T, Hyodo R, Sakai H, Abe M, Glatter O. Location of cholesterol in liposomes by using smallangle x-ray scattering (SAXS) data and the generalized indirect fourier transformation (GIFT) method. J Oleo Sci. 2013;62:913–8.

    Article  CAS  PubMed  Google Scholar 

  47. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010;1:109–31.

    Article  CAS  PubMed  Google Scholar 

  48. Benson HAE, Roberts MS, Leite-Silva VR, Walters K. Cosmetic formulation: principles and practice. Boca Raton: CRC Press; 2019.

  49. Antunes E, Cavaco-Paulo A. Stratum corneum lipid matrix with unusual packing: a molecular dynamics study. Colloids Surf B. 2020;190:110928.

    Article  CAS  Google Scholar 

  50. Shukla T, Upmanyu N, Agrawal M, Saraf S, Saraf S, Alexander A. Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother. 2018;108:1477–94.

    Article  CAS  PubMed  Google Scholar 

  51. Wiedersberg S, Guy RH. Transdermal drug delivery: 30+ years of war and still fighting! J Controlled Release. 2014;190:150–6.

    Article  CAS  Google Scholar 

  52. Liuzzi R, Carciati A, Guido S, Caserta S. Transport efficiency in transdermal drug delivery: what is the role of fluid microstructure? Colloids Surf B Biointerfaces. 2016;139:294–305.

    Article  CAS  PubMed  Google Scholar 

  53. Sivapragasam M, Moniruzzaman M, Goto M. Recent advances in exploiting ionic liquids for biomolecules: Solubility, stability and applications. Biotechnol J. 2016;11:1000–13.

    Article  CAS  PubMed  Google Scholar 

  54. Wu X, Chen Z, Li Y, Yu Q, Lu Y, Zhu Q, et al. Improving dermal delivery of hydrophilic macromolecules by biocompatible ionic liquid based on choline and malic acid. Int J Pharm. 2019;558:380–7.

    Article  CAS  PubMed  Google Scholar 

  55. Moniruzzaman M, Tamura M, Tahara Y, Kamiya N, Goto M. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: characterization and cytotoxicity evaluation. Int J Pharm. 2010;400:243–50.

    Article  CAS  PubMed  Google Scholar 

  56. Kandasamy S, Moniruzzaman M, Sivapragasam M, Shamsuddin MR, Mutalib MIA. Formulation and characterization of acetate based ionic liquid in oil microemulsion as a carrier for acyclovir and methotrexate. Sep Purif Technol. 2018;196:149–56.

    Article  CAS  Google Scholar 

  57. Sivapragasam M, Moniruzzaman M, Goto M. An overview on the toxicological properties of ionic liquids toward microorganisms. Biotechnol J. 2020;15:1–9.

    Article  Google Scholar 

  58. Gomes JM, Silva SS, Reis RL. Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev. 2019;48:4317–35.

    Article  CAS  PubMed  Google Scholar 

  59. Islam MR, Chowdhury MR, Wakabayashi R, Kamiya N, Moniruzzaman M, Goto M. Ionic liquid-in-oil microemulsions prepared with biocompatible choline carboxylic acids for improving the transdermal delivery of a sparingly soluble drug. Pharmaceutics 2020;12:1–18.

    Article  Google Scholar 

  60. Liu P, Hao J-W, Mo L-P, Zhang Z-H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 2015;5:48675–704.

    Article  CAS  Google Scholar 

  61. Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–82.

    Article  CAS  PubMed  Google Scholar 

  62. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids:  versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126:9142–7.

    Article  CAS  PubMed  Google Scholar 

  63. Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein M, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 2020;121:1232–85.

    Article  PubMed  Google Scholar 

  64. Sakuragi M, Maeda E, Kusakabe K. Penetration process of a hydrated deep eutectic solvent through the stratum corneum and its application as a protein penetration enhancer. ChemistryOpen. 2020;9:953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng Q, Wang Y, Huang Y, Ding X, Chen J, Xu K. Deep eutectic solvents as novel extraction media for protein partitioning. Analyst. 2014;139:2565–73.

    Article  CAS  PubMed  Google Scholar 

  66. Lu C, Cao J, Wang N, Su E. Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. MedChemComm. 2016;7:955–9.

    Article  CAS  Google Scholar 

  67. Weng L, Toner M. Janus-faced role of water in defining nanostructure of choline chloride/glycerol deep eutectic solvent. Phys Chem Chem Phys. 2018;20:22455–62.

    Article  CAS  PubMed  Google Scholar 

  68. Bryant SJ, Atkin R, Warr GG. Spontaneous vesicle formation in a deep eutectic solvent. Soft Matter. 2016;12:1645–8.

    Article  CAS  PubMed  Google Scholar 

  69. Arnold T, Jackson AJ, Sanchez-Fernandez A, Magnone D, Terry AE, Edler KJ. Surfactant behavior of sodium dodecylsulfate in deep eutectic solvent choline chloride/urea. Langmuir. 2015;31:12894–902.

    Article  CAS  PubMed  Google Scholar 

  70. Sakuragi M, Tsutsumi S, Kusakabe K. Deep eutectic solvent-induced structural transition of microemulsions explored with small-angle X-ray scattering. Langmuir. 2018;34:12635–41.

    Article  CAS  PubMed  Google Scholar 

  71. Tsai MJ, Lu IJ, Fu YS, Fang YP, Huang YB, Wu PC. Nanocarriers enhance the transdermal bioavailability of resveratrol: In-vitro and in-vivo study. Colloids Surf B Biointerfaces. 2016;148:650–6.

    Article  CAS  PubMed  Google Scholar 

  72. Kudo Y, Sakuragi M, Hashida S, Kuwahara R, Ishi-I T, Masunaga H, et al. Flexibility and local structure of a worm-like cylinder of self-assembled discotic triazine triamide. Polym J. 2010;42:812–7.

    Article  CAS  Google Scholar 

  73. Skov Pedersen J. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci. 1997;70:171–210.

    Article  Google Scholar 

  74. Pedersen JS, Gerstenberg MC. Scattering form factor of block copolymer micelles. Macromolecules. 1996;29:1363–5.

    Article  CAS  Google Scholar 

  75. Sakuragi M, Yoshimura H, Kusakabe K. Effects of structures of microemulsions containing a deep eutectic solvent on the entrapment amount and the skin permeation of resveratrol. Jpn J Appl Phys. 2020;59:1–4.

    Google Scholar 

  76. Jagdeo J, Adams L, Lev-Tov H, Sieminska J, Michl J, Brody N. Dose-dependent antioxidant function of resveratrol demonstrated via modulation of reactive oxygen species in normal human skin fibroblasts in vitro. J Drugs Dermatol. 2010;9:1523–6.

    PubMed  Google Scholar 

  77. Park SN, Jo NR, Jeon SH. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J Ind Eng Chem. 2014;20:1481–5.

    Article  CAS  Google Scholar 

  78. Hung CF, Lin YK, Huang ZR, Fang JY. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol Pharm Bull. 2008;31:955–62.

    Article  CAS  PubMed  Google Scholar 

  79. Sakuragi M, Yano R, Hasnol SBM, Kusakabe K. Evaluation of microemulsions containing a large amount of a deep eutectic solvent as a potential transdermal carrier of resveratrol. Jpn J Appl Phys. 2020;59:1–5.

    Google Scholar 

  80. Bang J, Jain S, Li Z, Lodge TP, Pedersen JS, Kesselman E, et al. Sphere, cylinder, and vesicle nanoaggregates in poly(styrene-b-isoprene) diblock copolymer solutions. Macromolecules. 2006;39:1199–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported partly by JSPS KAKENHI Grant No. JP19K15367. The synchrotron radiation experiments were conducted at SPring-8 BL40B2. We thank Dr. Noboru Ohta for our experimental support at SPring-8. We would also like to thank Prof. Katsuki Kusakabe for discussing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sakuragi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuragi, M. Evaluation of the supramolecular structure of drug delivery carriers using synchrotron X-ray scattering. Polym J 53, 1335–1344 (2021). https://doi.org/10.1038/s41428-021-00533-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00533-8

Search

Quick links