Skip to main content
Log in

Exploration of Trigonal Patch Antenna Characteristics with the Impact of 2D Photonic Crystal of Various Air Hole Shapes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The terahertz (THz) band contributes significantly to high-speed data rates in short-distance communication. This article proposes a unique design of the trigonal microstrip patch antenna on photonic crystal (PhC) substrate in THz communication. The PhC design structure employs unique air-hole shapes such as L, H, T, I and upturned L instead of regular periodic latitude holes. The proposed antenna substrate uses Rogers RO4350 material, which helps to attain high gain and almost negligible return loss at THz frequency. The antenna performance is investigated with different PhC air-hole shapes. The I-shaped air-hole PhC antenna offered a meager return loss of − 58.99 dB with a high gain of 9.1 dB and directivity of 10.7 dBi. The CST studio tool helps to simulate the parametric analysis of the proposed antenna design. This compact PhC antenna structure is apt for wireless communication, particularly in THz applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.F. O’Hara, S. Ekin, W. Choi, and I. Song, Technologies 7, 43 (2019).

    Article  Google Scholar 

  2. I. Malhotra, K.R. Jha, and G. Singh, Int. J. Microw. Wirel. Technol. 10, 271 (2018).

    Article  Google Scholar 

  3. T. Robin, C. Bouye, and J. Cochard, Terahertz applications: trends and challenges. in Proc. SPIE 8985, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VII, 898512 (2014). https://doi.org/10.1117/12.2043284

  4. H. Davoudabadifarahani, and B. Ghalamkari, Optik 194, 163118 (2019).

    Article  CAS  Google Scholar 

  5. G. Singh, Infrared Phys. Technol. 53, 17 (2010).

    Article  CAS  Google Scholar 

  6. S. Anand, D. Sriram Kumar, R.J. Wu, and M. Chavali, Optik 125, 5546 (2014).

    Article  CAS  Google Scholar 

  7. E. Fritz-Andrade, H. Jardon-Aguilar, and J.A. Tirado-Mendez, Radioengineering 27, 976 (2019).

    Article  Google Scholar 

  8. S.K. Tripathi, and A. Kumar, Austral. J. Electr. Electron. Eng. 16, 74–80 (2019).

    Article  Google Scholar 

  9. D.R. Smith, J.B. Pendry, and M.C.K. Wiltshire, Science 305, 788 (2004).

    Article  CAS  Google Scholar 

  10. D.A. Pawlak, Sci. Plena 4 (2008). https://www.semanticscholar.org/paper/Metamaterials-and-photonic-crystals-%E2%80%93-potential-for-Pawlak/ab84a947f54c71cb1894de86cfb87b0efc5c689e#citing-papers.

  11. M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, and M.F. Limonov, Transition from photonic crystals to dielectric metamaterials: a phase diagram and the order parameter. in Proc. SPIE 9885, Photonic Crystal Materials and Devices XII, 98850R, (2016).

  12. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, Opt. Lett. 30, 3356 (2005).

    Article  Google Scholar 

  13. P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, and J. Valentine, Nature Photon 7, 791–795 (2013).

    Article  CAS  Google Scholar 

  14. S. Kumar Danasegaran, E.C. Britto, and W. Johnson, Opt. Eng. 59, 087102 (2020).

    Google Scholar 

  15. S. Anand, D.S. Kumar, R. Wu, and M. Chavali, Optik 125, 2835 (2014).

    Article  CAS  Google Scholar 

  16. S. Ullah, C. Ruan, T. Ul Haq, and X. Zhang, J. Electromagn. Waves Appl. (2019). https://doi.org/10.1080/09205071.2019.1654929.

    Article  Google Scholar 

  17. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic crystals—molding the flow of light, 2nd ed., (New Jersey: Princeton University Press, 2008).

    Google Scholar 

  18. R. Kumar Kushwaha, and P. Karuppanan, Microwave Opt. Technol. Lett. 62, 439 (2019).

    Article  Google Scholar 

  19. M.S. Rabbani, and H. Ghafouri-Shiraz, Microw. Opt. Technol. Lett. (2017). https://doi.org/10.1002/mop.30332,59,3,(511-514).

    Article  Google Scholar 

  20. R.K. Kushwaha, P. Karuppanan, and L.D. Malviya, Phys. B Condens. Matter 545, 107 (2018).

    Article  CAS  Google Scholar 

  21. D. S. Kumar, P. Prithika and B. E. Caroline, Investigating the performance of microstrip patch antenna with photonic crystal on different substrate. in IEEE International Conference on System, Computation, Automation and Networking, (2019), pp. 1-5,

  22. A.C. Lepage, X. Begaud, G. Le Ray, and A. Sharaiha, Int. J. Antennas Propag. (2008). https://doi.org/10.1155/2008/410786.

    Article  Google Scholar 

  23. D.S. Kumar, B.E. Caroline, and S. Thilagavathi, Investigation of equilateral triangular microstrip patch antenna using photonic crystal. in International Conference on System, Computation, Automation and Networking, pp. 1–6, (2020)

  24. Z. Li, Y.L. Xue, and T. Shen, Math. Probl. Eng. 2012, 151603 (2012).

  25. A. Nejati, R.A. Sadeghzadeh, and F. Geran, Phys. B Condens. Matter 449, 113 (2014).

    Article  CAS  Google Scholar 

  26. J.P.P. Pereira, J.P. da Silva, and H.D. de Andrade, Microw. Opt. Technol. Lett. 57, 2147 (2015).

    Article  Google Scholar 

  27. E.R. Brown, C.D. Parker, and E. Yablonovitch, J. Opt. Soc. Am. B 10, 404 (1993).

    Article  Google Scholar 

  28. H.-S. Kitzerow, H. Matthias, S.L. Schweizer, H.M. van Driel, and R.B. Wehrspohn, Adv. Opt. Technol. 2008, 780784 (2008).

  29. J.R. Oh, Y.K. Lee, H.K. Park, and Y.R. Do, J. Appl. Phys. 105, 043103 (2009).

    Article  Google Scholar 

  30. A. Vahdati, and F. Parandin, Wirel. Pers Commun. 109, 2213 (2019).

    Article  Google Scholar 

  31. S.K. Tripathi, and A. Kumar, Manag. J. Commun. Eng. Syst. 6, 16 (2017).

    Google Scholar 

  32. E.C. Britto, S.K. Danasegaran, and W. Johnson, Int. J. Commun. Syst. 34, e4662 (2021). https://doi.org/10.1002/dac.4662.

    Article  Google Scholar 

  33. Amarveer Singh Dhillon, A.S. Dhillon, D. Mittal, and E. Sidhu, Optik 144, 634 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Kumar Danasegaran.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danasegaran, S.K., Britto, E.C. & Xavier, S.C. Exploration of Trigonal Patch Antenna Characteristics with the Impact of 2D Photonic Crystal of Various Air Hole Shapes. J. Electron. Mater. 50, 5365–5374 (2021). https://doi.org/10.1007/s11664-021-09071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09071-8

Keywords

Navigation