Skip to main content

Advertisement

Log in

Electrochemical Deposition of Cu-Nanoparticle-Loaded CdSe/TiO2 Nanotube Nanostructure as Photoelectrode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Surface alteration of titanium dioxide nanotube arrays by semiconductor and metal is one of the pathways to narrow the wide bandgap of titanium dioxide and thereby increase its absorption in the visible region. Cu-CdSe-cosensitized titanium dioxide nanotube arrays (Cu-CdSe/TiO2 nanotube) have been produced for use as photoanodes in photoelectrochemical cells. Ordered Cu-CdSe/TiO2 nanotubes were successfully prepared by varying the deposition time (1 min to 4 min) using a facile three-step electrochemical method. The composition, morphological structure, and visible-light response were characterized by field-emission scanning electron microscopy, x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy, ultraviolet–visible (UV–Vis) diffusion reflection spectroscopy (DRS), and photoelectrochemical testing. XRD analysis demonstrated that sensitization using Cu-CdSe did not destroy the structure of the anatase-phase nanotube arrays, with the formation of copper nanoparticles composed of cubic-like particles with increasing deposition time. UV–Vis DRS of the Cu-CdSe/TiO2 nanotubes revealed a red-shift of the photoresponse towards the visible-light region, characterized by bandgap narrowing and improved photoefficiency. The optimal photoelectrochemical performance was observed when depositing Cu nanoparticles for 1 min, surpassing that of pristine titania nanotube arrays and other materials prepared under different conditions. The features of these photoanodes for many applications include easy synthesis, low cost, high efficiency for visible lighting, and good stability. The present work demonstrates a feasible modification of TiO2 nanotubes with Cu-CdSe to form potential photoanodes for solar conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Afaq, A.L.I. Shah, Z. Guo, M.H. Sayyad, and S. Abdulkarim, J. Electron. Mater. 50, 613 (2021).

    Article  Google Scholar 

  2. M.M.M.A.A. Mozafari, J. Mater. Sci. Mater. Electron. 27, 10658 (2016).

    Article  Google Scholar 

  3. M.M. Momeni, and Y. Ghayeb, J Solid State Electrochem. 20, 683 (2016).

    Article  CAS  Google Scholar 

  4. M.M. Momeni, Y. Ghayeb, and M. Shafiei, Dalton Trans. 46, 12527 (2017).

    Article  CAS  Google Scholar 

  5. J.M. Macak, M. Zlamal, and J. Krysa, Small 3, 300 (2007).

    Article  CAS  Google Scholar 

  6. B.D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 2807 (2006).

    Article  CAS  Google Scholar 

  7. G. He, J. Zhang, Y. Hu, Z. Bai, and C. Wei, Appl. Catal. B Environ. 250, 301 (2019).

    Article  CAS  Google Scholar 

  8. K. Nakata, and A. Fujishima, J. Photochem. Photobiol. C Photochem. Rev. 13, 169 (2012).

    Article  CAS  Google Scholar 

  9. A.K. Ayal, Y. Lim, and A.M. Farhan, Res. Chem. Intermed. 44, 7231 (2018).

    Article  CAS  Google Scholar 

  10. C.R. Bellato, C.H.F. de Souza, and P.A. Rocha, J. Braz. Chem. Soc. 28, 2301 (2017).

    Google Scholar 

  11. T.J. Awaid, A.K. Ayal, A.M. Farhan, and L.Y. Chin, Baghdad Sci. J. 17, 1183 (2020).

    Article  Google Scholar 

  12. K.N. Chappanda, Y.R. Smith, L.W. Rieth, P. Tathireddy, M. Misra, and S.K. Mohanty, IEEE Trans. Nanotechnol. 26, 18 (2014).

    Google Scholar 

  13. M.Z. Lin, H. Chen, W.F. Chen, A. Nakaruk, P. Koshy, and C.C. Sorrell, Int. J. Hydrog. Energy 39, 21500 (2014).

    Article  CAS  Google Scholar 

  14. S. Baradaran, W.J. Basirun, E. Zalnezhad, M. Hamdi, A.D. Sarhan, and Y. Alias, J. Mech. Behav. Biomed. Mater. 20, 272 (2013).

    Article  CAS  Google Scholar 

  15. R. Dholam, N. Patel, M. Adami, and A. Miotello, J. Hydrog. Energy 33, 6896 (2008).

    Article  CAS  Google Scholar 

  16. Y.S. Kim, M.Y. Song, E.S. Park, S. Chin, G.-N. Bae, and J. Jurng, Appl. Biochem. Biotechnol. 168, 1143 (2012).

    Article  CAS  Google Scholar 

  17. N. Tsvetkov, L. Larina, J.K. Kang, and O. Shevaleevskiy, Nanomaterials 10, 296 (2020).

    Article  CAS  Google Scholar 

  18. C. Huang, X. Liu, Y. Liu, and Y. Wang, Chem. Phys. Lett. 432, 468 (2006).

    Article  CAS  Google Scholar 

  19. M. Ángel, L. Zavala, S. Alejandro, and L. Morales, Heliyon 3, e00456 (2017).

    Article  Google Scholar 

  20. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus, ACS Catal. 2, 949 (2012).

    Article  CAS  Google Scholar 

  21. O. Zakir, R. Idouhli, M. Elyaagoubi, M. Khadiri, A. Aityoub, Y. Koumya, S. Rafqah, A. Abouelfida, and A. Outzourhit, J. Nanomater. 2020, 1 (2020).

    Article  Google Scholar 

  22. N. Pishkar, M. Ghoranneviss, Z. Ghorannevis, and H. Akbari, Res. Phys. 9, 1246 (2018).

    Google Scholar 

  23. H. Sopha, Y. Norikawa, M. Motola, and L. Hromadko, Electrochem. Commun. 118, 106788 (2020).

    Article  CAS  Google Scholar 

  24. T. Ghani, M. Mujahid, M. Mehmood, and M. Ubaidullah, J. Electron. Mater. 49, 1881 (2020).

    Article  CAS  Google Scholar 

  25. R. Daghrir, P. Drogui, and D. Robert, Ind. Eng. Chem. Res. 52, 3581 (2013).

    Article  CAS  Google Scholar 

  26. A.K. Ayal, Z. Zainal, H.-N. Lim, Z.A. Talib, Y.-C. Lim, S.-K. Chang, N.A. Samsudin, A.M. Holi, and W.N.M. Amin, J. Mater. Sci. Mater. Electron. 27, 5204 (2016).

    Article  CAS  Google Scholar 

  27. M.M. Momeni, Y. Ghayeb, and F. Ezati, J. Colloid Interface Sci. 514, 70 (2018).

    Article  CAS  Google Scholar 

  28. W. Krengvirat, S. Sreekantan, and A.M. Noor, Int. J. Hydrog. Energy. 37, 10046 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Great thanks are extended to the Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia for efficient contribution to completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa Kadim Ayal.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayal, A.K., Hashim, A.K., Mohammed, A.M. et al. Electrochemical Deposition of Cu-Nanoparticle-Loaded CdSe/TiO2 Nanotube Nanostructure as Photoelectrode. J. Electron. Mater. 50, 5161–5167 (2021). https://doi.org/10.1007/s11664-021-09062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09062-9

Keywords

Navigation