Skip to main content
Log in

Performance of Nano-SiO2-Filled Poly(ether ketone ketone) Substrate for Fifth-Generation Communication

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nano-SiO2 particles have been incorporated into high-performance poly(ether ketone ketone) (PEKK) polymers to prepare satisfactory nanocomposite substrates for fifth-generation (5G) communication. Significantly lower dielectric constant (εr), dielectric loss (tan δ), and linear coefficient of thermal expansion (CTE) were found for each PEKKaxSiO2y nanocomposite film series incorporated with proper loadings of nano-SiO2 particles. The dielectric characteristics measured for each PEKKaxSiO2y nanocomposite film series decreased to a minimum as the nano-SiO2 loading approached an optimum value. Satisfactory εr (2.74 at 1 MHz), tan δ (0.00309 at 1 MHz), and linear CTE (~ 37 × 10−6/°C) for 5G high-speed communication were found for the nanocomposite film modified with the optimum nano-SiO2 loading of 10 wt.%. The porosity values measured for each PEKKaxSiO2y film series remained nearly zero then increased abruptly as the nano-SiO2 loading exceeded 10 wt.%. The free volume characteristics evaluated for each PEKKaxSiO2y film series increased to a maximum as the nano-SiO2 loading reached the optimum value of 10 wt.%. Possible explanations for the noticeably reduced dielectric and linear CTE characteristics found for PEKKaxSiO2y composite films are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. R. Santhi, V. K. Srivastava, G. Senthilkumaran, IEEE 58th Vehicular Technology Conference, lbaraki, Japan (2003).

  2. R. K. Goyal, K. A. Rokade, A. S. Kapadia, IEEE 12th International Conference on Nanoscience, Centre Birmingham, United Kingdom (2012).

  3. R.K. Goya, A.N. Tiwar, and U.P. Mulik, Compos. Part. A-Appl S. 38, 516 (2007).

    Article  Google Scholar 

  4. M. Heinle, and D. Drummer, Polym. Eng. Sci. 55, 2661 (2015).

    Article  CAS  Google Scholar 

  5. J. Meng, G. Liang, and L. Zhao, Sci. Technol. 62, 783 (2002).

    CAS  Google Scholar 

  6. Y.J. Wang, and X.Z. Zhang, Eng. Plast. Appl. 30, 35 (2002).

    Google Scholar 

  7. M.H. Yang, Printed Circuit Inf. 4, 27 (2009).

    Google Scholar 

  8. J.G. Andrews, S. Buzzi, and C. Wan, IEEE J. Sel. Area. Comm. 32, 1065 (2014).

    Article  Google Scholar 

  9. B. Curran, C. Tschoban, I. Ndip, 11th European Microwave Integrated Circuits Conference, Berlin, Germany (2016).

  10. Z. Geng, M. Huo, and J. Mu, J. Mater. Chem. C. 2, 1094 (2014).

    Article  CAS  Google Scholar 

  11. B.Y. Liaw, Polymer 42, 867 (2001).

    Article  CAS  Google Scholar 

  12. S.J. Martin, J.P. Godschalx, and M.E. Mills, Adv. Mater. 12, 1769 (2000).

    Article  CAS  Google Scholar 

  13. Y. Lu, S. Zhang, and Z. Geng, New J. Chem. 41, 3089 (2017).

    Article  CAS  Google Scholar 

  14. Y.H. Lai, M.C. Kuo, J.C. Huang, and M. Chen, Key Eng. Mater. 351, 15 (2007).

    Article  CAS  Google Scholar 

  15. K.C. Yung, H. Liem, and H. Choy, J. Appl. Polym. Sci. 116, 2348 (2010).

    Article  CAS  Google Scholar 

  16. A. Tsuchiya, H. Sugama, and T. Sunamoto,Electron. Lett. 48, 1216 (2012).

    Article  CAS  Google Scholar 

  17. M. Zhou, W. Zhang, D. Ding, International Conference on Electronic Packaging Technology and High Density Packaging, Shanghai, China (2011).

  18. D.C. Thompson, J. Papapolymerou, and M.M. Tentzeris, IEEE Microw. Wirel. Co. 15, 561 (2005).

    Article  Google Scholar 

  19. M. Hasegawa, Y. Tsujimura, K. Koseki, Poly(ester imide)s Possessing Low CTE and Low Water Absorption (II). Effect of Substituents, Polym. J. 40, 56 (2007).

  20. K.C. Yung, H. Liem, and H. Choy, J. Appl. Polym. Sci. 116, 1 (2010).

    Article  Google Scholar 

  21. J. Pan, K. Li, and J. Li, Appl. Phys. Lett. 95, 22902 (2009).

    Article  Google Scholar 

  22. J. Xie, W.Y. Peng, and G. Li, Polym Bull. 67, 45 (2011).

    Article  CAS  Google Scholar 

  23. N.H. Hendricks, S.Y. Lau, and A.R. Smith, MRS Proc. 381, 59 (1995).

    Article  CAS  Google Scholar 

  24. L. Bin, L. Tian, and T. Zack,J. Mater. Sci. 48, 3517 (2013).

    Article  Google Scholar 

  25. S.C. Tan, Z. Bai, and H. Sun, J. Mater. Sci. 38, 4013 (2003).

    Article  CAS  Google Scholar 

  26. Y.H. Lai, M.C. Kuo, and J.C. Huang, Mater. Sci. Eng. A. 458, 158 (2007).

    Article  Google Scholar 

  27. J. Hao, Y. Wei, and X. Li, J. Appl. Polym. Sci. 135, 15 (2018).

    Google Scholar 

  28. S.A. Cohen, Q. Lin, and L. Gignac, J. Polym. Sci. Pol. Phys. 45, 1482 (2010).

    Google Scholar 

  29. J. Lin, and X. Wang, Polymer 48, 318 (2007).

    Article  CAS  Google Scholar 

  30. J.I. Hong, P. Winberg, and L.S. Schadler, Mater. Lett. 59, 473 (2005).

    Article  CAS  Google Scholar 

  31. C. Wang, and T.M. Wang, Express Polym. Lett. 63, 667 (2013).

    Article  Google Scholar 

  32. N. Kıvılcım, T. Seçkin, and S. Köytepe, J. Porous Mater. 20, 709 (2013).

    Article  Google Scholar 

  33. Y.J. Lee, J.M. Huang, and S.W. Kuo, Polymer 46, 173 (2005).

    Article  CAS  Google Scholar 

  34. C.Y. Wang, W.T. Chen, and C. Xu, Chin. J. Polym Sci. 34, 1363 (2016).

    Article  CAS  Google Scholar 

  35. Y. Huang, X. Wei, and L. Liu, Mater. Lett. 232, 86 (2018).

    Article  CAS  Google Scholar 

  36. L. Liu, Y. Yuan, and Y. Huang, Phys. Chem. Chem. Phys. 19, 22 (2017).

    Google Scholar 

  37. Q. M. Sun, and Y. F. Wang, CN.101812170A (2010).

  38. T. Hsu, Y. F. Wang, S. H. Allen, US. 2010/0113688A1 (2009).

  39. Y. F. Wang, T. Hsu, S. H. Allen, CN. 102924898A (2015).

  40. N. Hao, A. Martin, and A. Schönhals, Macromolecules 40, 9672 (2015).

    Article  Google Scholar 

  41. A. Tezvergil, L.V. Lassila, and P.K. Vallittu, Dent. Mater. 19, 471 (2003).

    Article  CAS  Google Scholar 

  42. Y. Zhou, and F. Liu, Appl. Phys. Lett. 109, 1 (2016).

    Google Scholar 

  43. S.J. Tao, J. Chem. Phys. 56, 5499 (1972).

    Article  CAS  Google Scholar 

  44. H. Nakanishi, S. Wang, Y. C. Jean, International Symposium on Positron Annihilation Studies of Fluids. (Arlington, Texas, 1988).

  45. Q. Deng, C.S. Sundar, and Y.C. Jean, J. Chem. Phys. 96, 492 (1992).

    Article  CAS  Google Scholar 

  46. Y. Y. Wang, H. Nakanishi, Y. C. Jean, Positron annihilation in amine-cured epoxy polymers. Pressure dependence, J. Polym. Sci. Pol. Phys. 28, 1431 (1990).

  47. J. Wang, X. Yang, and G. Li, J. Appl. Polym. Sci. 82, 3431 (2001).

    Article  CAS  Google Scholar 

  48. S. Ghabezloo, Constr. Build. Mater. 24, 1796 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-taut Yeh.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, D.M., Zhou, G.K., Zhi, X.D. et al. Performance of Nano-SiO2-Filled Poly(ether ketone ketone) Substrate for Fifth-Generation Communication. J. Electron. Mater. 50, 5327–5337 (2021). https://doi.org/10.1007/s11664-021-09060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09060-x

Keywords

Navigation