Skip to main content
Log in

Unilateral Coherence and Coherence Distribution in Curved Spacetime

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study unilateral coherence and coherence distribution in the background of a Schwarzschild black hole. We find that, comparing to the flat spacetime, two types of unilateral coherence corresponding to the measurements on system A and system B, respectively, are asymmetric for any Hawking temperature, and the accessible coherence of system B is bigger than the accessible coherence of system A in curved spacetime. We also find that the local coherence of system B reduces with the increase of Hawking temperature, while the local coherence of system A remains unchanged. Unlike behavior of quantum entanglement in curved spacetime, the remaining coherence (correlated coherence) increases with the increase of finitevalued Hawking temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fuentes-Schuller, I., Mann, R.B.: Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  3. Martín-Martínez, E., Fuentes, I.: Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  4. Dai, Y., Shen, Z., Shi, Y.: Phys. Rev. D 94, 025012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Wang, J., Cao, H., Jing, J., Fan, H.: Phys. Rev. D 93, 125011 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Wu, S.M., Zeng, H.S.: Int. J. Theor. Phys. 59, 861 (2020)

    Article  Google Scholar 

  7. Martín-Martínez, E., Garay, L., León, J.: Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  8. Adesso, G., Fuentes-Schuller, I., Ericsson, M.: Phys. Rev. A 76, 062112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Richter, B., Lorek, K., Dragan, A., Omar, Y.: Phys. Rev. D 95, 076004 (2017)

    Article  ADS  Google Scholar 

  10. Debski, K., Dragan, A.: Phys. Rev. D 98, 025003 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, T., Zhang, B., You, L.: Phys. Rev. D 97, 045005 (2018)

    Article  ADS  Google Scholar 

  12. Liu, T., Jing, J., Wang, J.: Adv. Quantum Technol. 1, 1800072 (2018)

    Article  Google Scholar 

  13. Liu, T., Wang, J., Jing, J., Fan, H.: Ann. Phys. 390, 334 (2018)

    Article  ADS  Google Scholar 

  14. Wu, S.M., Zeng, H.S.: Class. Quantum Grav. 37, 115003 (2020)

    Article  ADS  Google Scholar 

  15. Wu, S.M., Zeng, H.S., Li, Z.C.: Laser Phys. Lett. 17, 035202 (2020)

    Article  ADS  Google Scholar 

  16. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  17. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  Google Scholar 

  18. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hawking, S.W.: Commun, Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  20. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. Terashima, H.: Phys. Rev. D 61, 104016 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lambert, N., Chen, Y., Cheng, Y., Li, C., Chen, G., Nori, F.: Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  23. Åberg, J.: Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  24. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  25. Glauber, R.J.: Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  26. Scully, M.O.: Phys. Rev. Lett. 67, 1855 (1991)

    Article  ADS  Google Scholar 

  27. Memarzadeh, L., Mani, A.: Phys. Rev. A 96, 042318 (2017)

    Article  ADS  Google Scholar 

  28. Koyu, S., Tscherbul, T.: Phys. Rev. A 98, 023811 (2018)

    Article  ADS  Google Scholar 

  29. Ma, T., Zhao, M., Zhang, H., Fei, S., Long, G.: Phys. Rev. A 95, 042328 (2017)

    Article  ADS  Google Scholar 

  30. Yu, C.S., Song, H.S.: Phys. Rev. A 80, 022324 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hughston, L.P., Josza, R., Wootters, W.K.: Phys. Lett. A 183, 14 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. Baumgratz, T., Cramer, M., Plenio, M.B.: Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  33. Brill, D.R., Wheeler, J.A.: Rev. Mod. Phys. 29, 465 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  34. Garfinkle, D., Horowitz, G.T., Strominger, A.: Phys. Rev. D 45, 3888 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  35. Jing, J.: Phys. Rev. D 70, 065004 (2004)

    Article  ADS  Google Scholar 

  36. Jing, J.: Phys. Rev. D 69, 084009 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Wang, J., Pan, Q., Jing, J.: Phys. Lett. B 692, 202 (2010)

    Article  ADS  Google Scholar 

  38. Damoar, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  39. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics, pp 67–80. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  40. Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  41. Friis, N., et al.: Phys. Rev. A 84, 062111 (2011)

    Article  ADS  Google Scholar 

  42. Montero, M., Leon, J., Martín-Martínez, E.: Phys. Rev. A 84, 042320 (2011)

    Article  ADS  Google Scholar 

  43. Chang, J., Kwon, Y.: Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  44. Bruschi, D., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  45. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key projects of science research in University of Anhui Province(GrantKJ2020A0695 and the Innovation Project of Excellent Talents Training in Anhui Province(2020zyrc153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Min Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, R., Wang, Y. & Wu, SM. Unilateral Coherence and Coherence Distribution in Curved Spacetime. Int J Theor Phys 60, 3426–3434 (2021). https://doi.org/10.1007/s10773-021-04918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04918-6

Keywords

Navigation