Skip to main content
Log in

Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The hydrogen evolution reaction (HER) of molybdenum disulfide (MoS2) is limited in alkaline and acid solution because the active sites are on the finite edge with extended basal plane remaining inert. Herein, we activated the interfacial S sites by coupling with Ru nanoparticles on the inert basal plane of MoS2 nanosheets. The density functional theory (DFT) calculation and experimental results show that the interfacial S electronic structure was modulated. And the results of ΔGH* demonstrate that the adsorption of H on the MoS2 was also optimized. With the advantage of interfacial S sites activation, the Ru-MoS2 needs only overpotential of 110 and 98 mV to achieve 10 mA·cm−2 in both 0.5 M H2SO4 and 1 M KOH solution, respectively. This strategy paves a new way for activating the basal plane of other transition metal sulfide electrocatalysts for improving the HER performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, Y. R.; Li, M. G.; Yang, W. W.; Yu, Y. S.; Hao, S. E. 3D ordered mesoporous cobalt ferrite phosphides for overall water splitting. Sci. China Mater. 2020, 63, 240–248.

    Article  CAS  Google Scholar 

  2. Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

    Article  Google Scholar 

  3. Li, M. G.; Luo, M. C.; Xia, Z. H.; Yang, Y.; Huang, Y. R.; Wu, D.; Sun, Y. J.; Li, C. J.; Chao, Y. G.; Yang, W. X. et al. Modulating the surface segregation of PdCuRu nanocrystals for enhanced all-pH hydrogen evolution electrocatalysis. J. Mater. Chem. A 2019, 7, 20151–20157.

    Article  CAS  Google Scholar 

  4. Lu, K.; Liu, Y. Z.; Lin, F.; Cordova, I. A.; Gao, S. Y.; Li, B. M.; Peng, B.; Xu, H. P.; Kaelin, J.; Coliz, D. et al. LixNiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. J. Am. Chem. Soc. 2020, 142, 12613–12619.

    Article  CAS  Google Scholar 

  5. Ji, X. X.; Lin, Y. H.; Zeng, J.; Ren, Z. H.; Lin, Z. J.; Mu, Y. B.; Qiu, Y. J.; Yu, J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 2021, 12, 1380.

    Article  CAS  Google Scholar 

  6. Yang, J.; Mohmad, A. R.; Wang, Y.; Fullon, R.; Song, X. J.; Zhao, F.; Bozkurt, I.; Augustin, M.; Santos, E. J. G.; Shin, H. S. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 2019, 18, 1309–1314.

    Article  CAS  Google Scholar 

  7. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  CAS  Google Scholar 

  8. Kobayashi, D.; Kobayashi, H.; Wu, D. S.; Okazoe, S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y. et al. Significant enhancement of hydrogen evolution reaction activity by negatively charged Pt through light doping of W. J. Am. Chem. Soc. 2020, 142, 17250–17254.

    Article  CAS  Google Scholar 

  9. Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H.; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

    Article  CAS  Google Scholar 

  10. Li, Y. L.; He, J. F.; Cheng, W. R.; Su, H.; Li, C. L.; Zhang, H.; Liu, M. H.; Zhou, W. L.; Chen, X.; Liu, Q. H. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater., in press, DOI: https://doi.org/10.1007/s40843-020-1656-0.

  11. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

    Article  CAS  Google Scholar 

  12. Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

    Article  CAS  Google Scholar 

  13. Tian, F. Y.; Geng, S.; He, L.; Huang, Y. R.; Fauzi, A.; Yang, W. W.; Liu, Y. Q.; Yu, Y. S. Interface engineering: PSS-PPy wrapping amorphous Ni-Co-P for enhancing neutral-pH hydrogen evolution reaction performance. Chem. Eng. J. 2021, 417, 129232.

    Article  CAS  Google Scholar 

  14. Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

    Article  CAS  Google Scholar 

  15. Su, J. Z.; Zhou, J. L.; Wang, L.; Liu, C.; Chen, Y. B. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644.

    Article  CAS  Google Scholar 

  16. Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  17. Wang, H. Q.; Xu, Z. F.; Zhang, Z. F.; Hu, S. X.; Ma, M. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Addressable surface engineering for N-doped WS2 nanosheet arrays with abundant active sites and the optimal local electronic structure for enhanced hydrogen evolution reaction. Nanoscale 2020, 12, 22541–22550.

    Article  CAS  Google Scholar 

  18. Geng, S.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W.; Li, H. B. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano Res. 2020, 13, 121–126.

    Article  CAS  Google Scholar 

  19. Huang, H. J.; Yan, M. M.; Yang, C. Z.; He, H. Y.; Jiang, Q. G.; Yang, L.; Lu, Z. Y.; Sun, Z. Q.; Xu, X. T.; Bando, Y. et al. Graphene nanoarchitectonics: Recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2019, 31, 1903415.

    Article  CAS  Google Scholar 

  20. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Article  Google Scholar 

  21. Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726.

    Article  CAS  Google Scholar 

  22. Lei, L.; Huang, D. L.; Zeng, G. M.; Cheng, M.; Jiang, D. N.; Zhou, C. Y.; Chen, S.; Wang, W. J. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coordin. Chem. Rev. 2019, 399, 213020.

    Article  CAS  Google Scholar 

  23. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  CAS  Google Scholar 

  24. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  CAS  Google Scholar 

  25. Tsai, C.; Chan, K. R.; Nørskov, J. K.; Abild-Pedersen, F. Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surf. Sci. 2015, 640, 133–140.

    Article  CAS  Google Scholar 

  26. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  CAS  Google Scholar 

  27. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

    Article  CAS  Google Scholar 

  28. Sun, C.; Wang, P. P.; Wang, H.; Xu, C.; Zhu, J. T.; Liang, Y. X.; Su, Y.; Jiang, Y. N.; Wu, W. Q.; Fu, E. G. et al. Defect engineering of molybdenum disulfide through ion irradiation to boost hydrogen evolution reaction performance. Nano Res. 2019, 12, 1613–1618.

    Article  CAS  Google Scholar 

  29. Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.

    Article  CAS  Google Scholar 

  30. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  CAS  Google Scholar 

  31. Geng, S.; Yang, W. W.; Liu, Y. Q.; Yu, Y. S. Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction. J. Catal. 2020, 391, 91–97.

    Article  CAS  Google Scholar 

  32. Geng, S.; Liu, H.; Yang, W. W.; Yu, Y. S. Activating the MoS2 basal plane by controllable fabrication of pores for an enhanced hydrogen evolution reaction. Chem. Eur. J. 2018, 24, 19075–19080.

    Article  CAS  Google Scholar 

  33. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

    Article  CAS  Google Scholar 

  34. Hong, M.; Shi, J. P.; Huan, Y. H.; Xie, Q.; Zhang, Y. F. Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction. Nano Res. 2019, 12, 2140–2149.

    Article  CAS  Google Scholar 

  35. Park, S.; Kim, C.; Park, S. O.; Oh, N. K.; Kim, U.; Lee, J.; Seo, J.; Yang, Y. J.; Lim, H. Y.; Kwak, S. K. et al. Phase engineering of transition metal dichalcogenides with unprecedentedly high phase purity, stability, and scalability via molten-metal-assisted intercalation. Adv. Mater. 2020, 32, 2001889.

    Article  CAS  Google Scholar 

  36. Kim, Y.; Jackson, D. H. K.; Lee, D.; Choi, M.; Kim, T. W.; Jeong, S. Y.; Chae, H. J.; Kim, H. W.; Park, N.; Chang, H. et al. In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1701825.

    Article  Google Scholar 

  37. Sun, K. A.; Zeng, L. Y.; Liu, S. H.; Zhao, L.; Zhu, H. Y.; Zhao, J. C.; Liu, Z.; Cao, D. W.; Hou, Y. C.; Liu, Y. Q. et al. Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution. Nano Energy 2019, 58, 862–869.

    Article  CAS  Google Scholar 

  38. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    Article  CAS  Google Scholar 

  39. Wang, L.; Li, Z. J.; Wang, K. X.; Dai, Q. Z.; Lei, C. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Leung, M. K. H.; Hou, Y. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn-H2O cell over a wide pH range. Nano Energy 2020, 74, 104850.

    Article  CAS  Google Scholar 

  40. Duan, H. L.; Liu, W.; Guo, P.; Tang, F. M.; Yan, W. S.; Yao, T. Identifying the single active site in MoS2-based hydrogen evolution electrocatalyst by XAFS technique. Radiat. Phys. Chem. 2020, 175, 108151.

    Article  CAS  Google Scholar 

  41. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    Article  CAS  Google Scholar 

  42. Zhang, X.; Zhou, F.; Zhang, S.; Liang, Y. Y.; Wang, R. H. Engineering MoS2 basal planes for hydrogen evolution via synergistic ruthenium doping and nanocarbon hybridization. Adv. Sci. 2019, 6, 1900090.

    Article  Google Scholar 

  43. Wei, S. T.; Cai, X. Q.; Xu, Y. C.; Shang, B.; Zhang, Q. H.; Gu, L.; Fan, X. F.; Zheng, L. R.; Hou, C. M.; Huang, H. H. et al. Iridium-triggered phase transition of MoS2 nanosheets boosts overall water splitting in alkaline media. ACS Energy Lett. 2019, 4, 368–374.

    Article  CAS  Google Scholar 

  44. Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 496–500.

    Article  CAS  Google Scholar 

  45. Liu, X. Y.; Liu, H.; Wang, Y. J.; Yang, W. W.; Yu, Y. S. Nitrogen-rich g-C3N4@AgPd Mott-Schottky heterojunction boosts photocatalytic hydrogen production from water and tandem reduction of NO3 and NO2. J. Colloid Interface Sci. 2021, 581, 619–626.

    Article  CAS  Google Scholar 

  46. He, R.; Hua, J.; Zhang, A. Q.; Wang, C. H.; Peng, J. Y.; Chen, W. J.; Zeng, J. Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution. Nano Lett. 2017, 17, 4311–4316.

    Article  CAS  Google Scholar 

  47. Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

    Article  CAS  Google Scholar 

  48. Bolar, S.; Shit, S.; Kumar, J. S.; Murmu, N. C.; Ganesh, R. S.; Inokawa, H.; Kuila, T. Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl. Catal. B Environ. 2019, 254, 432–442.

    Article  CAS  Google Scholar 

  49. Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

    Article  CAS  Google Scholar 

  50. LaRue, J.; Krejčí, O.; Yu, L.; Beye, M.; Ng, M. L.; Öberg, H.; Xin, H.; Mercurio, G.; Moeller S.; Turner, J. J. et al. Real-time elucidation of catalytic pathways in CO hydrogenation on Ru. J. Phys. Chem. Lett. 2017, 8, 3820–3825.

    Article  CAS  Google Scholar 

  51. Ni, J.; Ran, H. Y.; Lin, J. X.; Wang, X. Y.; Lin, B. Y.; Jiang, L. L. Investigation on deactivation of K-promoted Ru catalyst for ammonia synthesis by CO formation. ChemistrySelect 2020, 5, 6639–6645.

    Article  CAS  Google Scholar 

  52. Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51871078 and 52071119) and Heilongjiang Science Foundation (No. E201808). The authors acknowledge the Beijing Super Cloud Computing Center (BSCC) for providing HPC resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Yang, Yongsheng Yu or Yanglong Hou.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Tian, F., Li, M. et al. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 15, 1809–1816 (2022). https://doi.org/10.1007/s12274-021-3755-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3755-7

Keywords

Navigation