Skip to main content

Advertisement

Log in

Hydrometallurgical Recycling of Red Mud to Produce Materials for Industrial Applications: Alkali Separation, Iron Leaching and Extraction

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Red mud is a polymetallic waste generated during Bayer's process of alumina production. High alkalinity (pH > 11), multiple elements, and micron-sized particles make red mud recycling energy-intensive and challenging. The following work presents a hydrometallurgical flowsheet for separation of different red mud elements and recovery of high purity Fe (II) product using cost-effective reagents, energy-efficient processes, and minimal waste generation. Red mud preprocessing was carried out by mild hydrochloric acid wash (1 M, 13 pct pulp density, 40 °C 15 minutes), followed by leaching of hematite from neutralized red mud in oxalic acid (2 M, 10 pct pulp density, 95 °C, 2.5 hours). UV light-assisted photochemical reduction of oxalic leach solution of red mud separated more than 98 pct Fe in the form of ferrous oxalate (purity more than 99 pct) within 5 hours. The process's material balance shows a overall recovery of more than 85 pct Fe value as solid ferrous oxalate of high purity and concentrating titanium oxide in the residue and aluminum in the leaching solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Habashi: In Essential Readings in Light Metals. Springer, Cham, 2016, pp. 85–93.

    Book  Google Scholar 

  2. F. Habashi: Bull. Hist. Chem., 1995, vol. 17(18), pp. 15–9. .

    Google Scholar 

  3. K. Evans: J. Sustain. Met., 2016, vol. 2, pp. 316–31. .

    Article  Google Scholar 

  4. J. Anawati and G. Azimi: Waste Manag., 2019, vol. 95, pp. 549–59. .

    Article  CAS  Google Scholar 

  5. H. Gu, J.S.J. Hargreaves, J.Q. Jiang, and J.L. Rico: J. Sustain. Met., 2016, vol. 3, pp. 561–9.

    Article  Google Scholar 

  6. L. Piga, F. Pochetti, and L. Stoppa: JOM., 1993, vol. 45, pp. 54–9. .

    Article  CAS  Google Scholar 

  7. C.R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, and T. Van Gerven: J. Sustain. Met., 2016, vol. 2, pp. 365–86. .

    Article  Google Scholar 

  8. B. Mishra and S. Gostu: Front. Chem. Sci. Eng., 2017, vol. 11, pp. 483–96. .

    Article  CAS  Google Scholar 

  9. K. Jayasankar, P.K. Ray, A.K. Chaubey, A. Padhi, B.K. Satapathy, and P.S. Mukherjee: Int. J. Miner. Metal. Mat., 2012, vol. 19, pp. 679–84. .

    Article  CAS  Google Scholar 

  10. F. Kaußen and B. Friedrich: Chem. Ing. Tech., 2015, vol. 87, pp. 1535–42. .

    Article  CAS  Google Scholar 

  11. J. Anawati and G. Azimi: Rare Metal Technology 2020. Springer, Cham, 2020, pp. 139–50.

    Book  Google Scholar 

  12. C.R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, and T. Van Gerven: J. Sustain. Met., 2015, vol. 2, pp. 28–37. .

    Article  Google Scholar 

  13. E. Erçağ and R. Apak: J. Chem. Technol. Biotechnol., 1997, vol. 70, pp. 241–6. .

    Article  Google Scholar 

  14. F.I. Azof, M. Vafeias, D. Panias, and J. Safarian: Hydrometallurgy., 2020, vol. 191, pp. 1–12. .

    Article  CAS  Google Scholar 

  15. S. Agrawal, V. Rayapudi, and N. Dhawan: Miner. Eng., 2019, vol. 132, pp. 202–10. .

    Article  CAS  Google Scholar 

  16. C. Cardenia, E. Balomenos, and D. Panias: J. Sustain. Met., 2018, vol. 5, pp. 9–19. .

    Article  Google Scholar 

  17. X. Liu, P. Gao, S. Yuan, Y. Lv, and Y. Han, Miner. Eng., 2020, vol. 157, pp. 1–10.

    Article  CAS  Google Scholar 

  18. M. Samouhos, M. Taxiarchou, G. Pilatos, P.E. Tsakiridis, E. Devlin, and M. Pissas: Miner. Eng., 2017, vol. 105, pp. 36–43. .

    Article  CAS  Google Scholar 

  19. S. Agrawal, V. Rayapudi, and N. Dhawan: J. Sustain. Met., 2018, vol. 4, pp. 427–36. .

    Article  Google Scholar 

  20. D. Wei, X. Jun-Hui, P. Yang, S. Si-Yue, and C. Tao: Miner. Process. Extr. Metall. Rev., 2019, vol. 32(3), pp. 1–9.

    Google Scholar 

  21. T.J. Chun, D.Q. Zhu, J. Pan, and Z. He: Can. Metall. Q., 2013, vol. 53, pp. 183–9. .

    Article  CAS  Google Scholar 

  22. B. Mishra, A. Staley, and D. Kirkpatrick: Trans. Soc. Min. Metall. Explor., 2002, vol. 19, pp. 87–94. .

    CAS  Google Scholar 

  23. M. Rao, J. Zhuang, G. Li, J. Zeng, and T. Jiang: in Light Metals 2013, B.A. Sadler, ed., Springer, Cham, 2016, pp. 125–30.

  24. C. Cardenia, E. Balomenos, P. Wai-Yin-Tam, and D. Panias: Minerals., 2021, vol. 11, p. 222. .

    Article  CAS  Google Scholar 

  25. S. Agatzini-Leonardou, P. Oustadakis, P.E. Tsakiridis, and C. Markopoulos: J. Hazard. Mater., 2008, vol. 157, pp. 579–86. .

    Article  CAS  Google Scholar 

  26. G. Alkan, C. Schier, L. Gronen, S. Stopic, and B. Friedrich: Metals., 2017, vol. 7, p. 458. .

    Article  CAS  Google Scholar 

  27. G. Alkan, B. Yagmurlu, S. Cakmakoglu, T. Hertel, S. Kaya, L. Gronen, S. Stopic, and B. Friedrich: Sci. Rep., 2018, vol. 8, p. 5676. .

    Article  CAS  Google Scholar 

  28. C.R. Borra, Y. Pontikes, K. Binnemans, and T. Van Gerven: Miner. Eng., 2015, vol. 76, pp. 20–7. .

    Article  CAS  Google Scholar 

  29. P. Kasliwal and P.S.T. Sai: Hydrometallurgy., 1999, vol. 53, pp. 73–87. .

    Article  CAS  Google Scholar 

  30. A. Sokolov, D. Valeev, and A. Kasikov: Metals., 2021, vol. 11, p. 321. .

    Article  CAS  Google Scholar 

  31. Abhilash, S. Sinha, M.K. Sinha, and B.D. Pandey: Int. J. Miner. Process., 2014, vol. 127, pp. 70–73.

  32. A. Akcil, N. Akhmadiyeva, R. Abdulvaliyev, Abhilash, and P. Meshram: Miner. Process. Extr. Metall. Rev., 2017, vol. 39, pp. 145–51.

  33. W. Wang, Y. Pranolo, and C.Y. Cheng: Sep. Purif. Technol., 2013, vol. 108, pp. 96–102. .

    Article  CAS  Google Scholar 

  34. S. Reid, J. Tam, M. Yang, and G. Azimi: Sci. Rep., 2017, vol. 7, p. 15252. .

    Article  CAS  Google Scholar 

  35. S. Agrawal and N. Dhawan: Miner. Eng., 2021, vol. 160, pp. 1–13.

    Article  CAS  Google Scholar 

  36. R.P. Narayanan, N.K. Kazantzis, and M.H. Emmert: ACS Sustain. Chem. Eng., 2017, vol. 6, pp. 1478–88. .

    Article  CAS  Google Scholar 

  37. R.M. Rivera, B. Ulenaers, G. Ounoughene, K. Binnemans, and T. Van Gerven: Miner. Eng., 2018, vol. 119, pp. 82–92. .

    Article  CAS  Google Scholar 

  38. C.R. Borra, J. Mermans, B. Blanpain, Y. Pontikes, K. Binnemans, and T. Van Gerven: Miner. Eng., 2016, vol. 92, pp. 151–9. .

    Article  CAS  Google Scholar 

  39. F. Meng, X. Li, P. Wang, F. Yang, D. Liang, F. Gao, C. He, and Y. Wei: JOM., 2019, vol. 72, pp. 816–22. .

    Article  CAS  Google Scholar 

  40. S.O. Lee, T. Tran, B.H. Jung, S.J. Kim, and M.J. Kim: Hydrometallurgy., 2007, vol. 87, pp. 91–9. .

    Article  CAS  Google Scholar 

  41. M. Taxiarchou, D. Panias, I. Douni, I. Paspaliaris, and I. Kontopoulos: Hydrometallurgy., 1997, vol. 44, pp. 287–99. .

    Article  CAS  Google Scholar 

  42. Y. Yang, X. Wang, M. Wang, H. Wang, and P. Xian: Hydrometallurgy., 2015, vol. 157, pp. 239–45. .

    Article  CAS  Google Scholar 

  43. Z. Yu, Z. Shi, Y. Chen, Y. Niu, Y. Wang, and P. Wan: Trans. Nonferrous Met. Soc. China., 2012, vol. 22, pp. 456–60. .

    Article  CAS  Google Scholar 

  44. H. Majima, Y. Awakura, and T. Mishima: Metall. Trans. B., 1985, vol. 16B, pp. 23–30. .

    Article  CAS  Google Scholar 

  45. P.B. Queneau and C.E. Berthold: Can. Metall. Q., 1986, vol. 25, pp. 201–9. .

    Article  CAS  Google Scholar 

  46. F.K. Crundwell: ACS Omega., 2017, vol. 2, pp. 1116–27. .

    Article  CAS  Google Scholar 

  47. S. Rai, K.L. Wasewar, and A. Agnihotri: Waste Manag. Res., 2017, vol. 35, pp. 563–80. .

    Article  CAS  Google Scholar 

  48. I. Hassan and H.D. Grundy: Acta Crystallogr., 1984, vol. B40, pp. 6–13. .

    Article  CAS  Google Scholar 

  49. K. Momma and F. Izumi: J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–6. .

    Article  CAS  Google Scholar 

  50. P. Smith: Hydrometallurgy., 2009, vol. 98, pp. 162–76. .

    Article  CAS  Google Scholar 

  51. D. Panias, M. Taxiarchou, I. Douni, I. Paspaliaris, and A. Kontopoulos: Can. Metall. Q., 1996, vol. 35, pp. 363–73. .

    Article  CAS  Google Scholar 

  52. D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos: Hydrometallurgy., 1996, vol. 42, pp. 257–65. .

    Article  CAS  Google Scholar 

  53. S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim: Int. J. Miner. Process., 2006, vol. 80, pp. 144–52. .

    Article  CAS  Google Scholar 

  54. R. Salmimies, M. Mannila, J. Kallas, and A. Häkkinen: Int. J. Miner. Process., 2012, vol. 110–111, pp. 121–5. .

    Article  CAS  Google Scholar 

  55. P. Vehmaanperä, R. Salmimies, and A. Häkkinen: Trans. Soc. Min. Metall. Explor., 2021, vol. 38, pp. 69–80. .

    Google Scholar 

  56. W.M. Riggs and C.E. Bricker: Anal. Chem., 1966, vol. 38, pp. 897–9. .

    Article  CAS  Google Scholar 

  57. D.M. Mangiante, R.D. Schaller, P. Zarzycki, J.F. Banfield, and B. Gilbert: ACS Earth Space Chem., 2017, vol. 1, pp. 270–6. .

    Article  CAS  Google Scholar 

  58. Y. Ogi, Y. Obara, T. Katayama, Y.I. Suzuki, S.Y. Liu, N.C.M. Bartlett, N. Kurahashi, S. Karashima, T. Togashi, Y. Inubushi, K. Ogawa, S. Owada, M. Rubešová, M. Yabashi, K. Misawa, P. Slavíček, and T. Suzuki: Struct. Dyn., 2015, vol. 2, p. 034901. .

    Article  CAS  Google Scholar 

  59. C. Han, G. Wang, M. Zou, and C. Shi: Metals, 2019, vol. 9(11), 1178.

  60. A. Angermann and J. Töpfer: J. Mater. Sci., 2008, vol. 43, pp. 5123–30. .

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajendra Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 26, 2021; accepted July 19, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanvar, H., Mishra, B. Hydrometallurgical Recycling of Red Mud to Produce Materials for Industrial Applications: Alkali Separation, Iron Leaching and Extraction. Metall Mater Trans B 52, 3543–3557 (2021). https://doi.org/10.1007/s11663-021-02285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02285-5

Navigation