Skip to main content
Log in

Secured telemedicine of medical imaging based on dual robust watermarking

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Medical information management has progressed in the last few years because of the advances in information technologies. Nowadays, it is possible to share medical images among specialists geographically distant to interpret, discuss, and get improved diagnostics. However, any alteration of transmitted image metadata may lead to issues related to information security, such as detachment and authentication. Detachment refers to link the data of an electronic patient record to an incorrect medical image, while authentication aims to identify the image source. These security problems are critical as they may cause the loss of sensitive data or wrong medical diagnoses. Digital watermarking is an emerging technique that faces these security problems as it allows to embed the metadata directly into the medical image. This paper proposes a hybrid and robust watermarking technique to prevent detachment and authenticate medical images. The quantization index modulation algorithm under dither modulation in conjunction with forwarding error correction is used to embed relevant metadata as a robust-imperceptible watermarking to avoid detachment. The visible-imperceptible watermarking paradigm, whose use is an innovation in medical images, is applied to insert a second watermark in the spatial domain to perform authentication. The experimental results show the contribution of the proposed scheme and its efficiency regarding robustness and imperceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. National Electrical Manufacturers Association (NEMA), DICOM Security. 8 Feb 2020. https://www.dicomstandard.org/using/security/

  2. Coatrieux, G., Quantin, C., et al.: Watermarking medical images with anonymous patient identification to verify authenticity. In: Studies in Health Technology and Informatics, Vol. 136, pp. 667–672. IOS Press (2008)

  3. Qasim, A.F., Meziane, F., Aspin, R.: Digital watermarking: applicability for developing trust in medical imaging workflows state of the art review. Comput. Sci. Rev. 27, 45–60 (2018). https://doi.org/10.1016/j.cosrev.2017.11.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Mousavi, S.M., Naghsh, A., Abu-Bakar, S.A.R.: Watermarking techniques used in medical images: a survey. J. Digit Imaging 27, 714–729 (2014). https://doi.org/10.1007/s10278-014-9700-5

    Article  Google Scholar 

  5. Das, S., Kundu, M.K.: Effective management of medical information through a novel blind watermarking technique. J. Med Syst. 36, 3339–3351 (2012). https://doi.org/10.1007/s10916-012-9827-1

    Article  Google Scholar 

  6. Cedillo-Hernandez, M., et al.: Robust watermarking method in DFT domain for effective management of medical imaging. SiVP Springer 9, 1163–1178 (2015). https://doi.org/10.1007/s11760-013-0555-x

    Article  Google Scholar 

  7. Kalaivani, K.: An efficient watermarking scheme for medical data security with the aid of neural network. Braz. Archiv. Biol. Technol. 59(spe2), e16161070, 1–12 (2016). https://doi.org/10.1590/1678-4324-2016161070

  8. Aherrahrou, N., Tairi, H.: PDE based scheme for multi-modal medical image watermarking. BioMed Eng. OnLine 14(108), 1–19 (2015). https://doi.org/10.1186/s12938-015-0101-x

    Article  Google Scholar 

  9. Cedillo-Hernandez, M., et al.: Security enhancement of medical imaging via imperceptible and robust watermarking. IEICE Trans. Inf. Syst E98-D5(9), 1702–1705 (2015). https://doi.org/10.1587/transinf.2015EDL8016

    Article  Google Scholar 

  10. Singh, A.K., Dave, M., Mohan, A.: Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimed. Tools Appl. 75, 8381–8401 (2016). https://doi.org/10.1007/s11042-015-2754-7

    Article  Google Scholar 

  11. Mousavi, S.M., et al.: A robust medical image watermarking against salt and pepper noise for brain MRI images. Multimed. Tools Appl. 76, 10313–10342 (2017). https://doi.org/10.1007/s11042-016-3622-9

    Article  Google Scholar 

  12. Rodriguez-Colin, R., et al.: A robust watermarking scheme applied to radiological medical images. IEICE Trans. Inf. Syst. E91-D(3), 862–864 (2008). https://doi.org/10.1093/ietisy/e91-d.3.862

    Article  Google Scholar 

  13. Sharma, A., Singh, A.K., Ghrera, S.P.: Secure hybrid robust watermarking technique for medical images. Procedia Comput. Sci. 70, 778–784 (2015). https://doi.org/10.1016/j.procs.2015.10.117

    Article  Google Scholar 

  14. Thakkar, F.N., Srivastava, V.K.: A blind medical image watermarking: DWT-SVD based robust and secure approach for telemedicine applications. Multimed. Tools Appl. 76, 3669–3697 (2017). https://doi.org/10.1007/s11042-016-3928-7

    Article  Google Scholar 

  15. Gangadhar, Y., et al.: An evolutionary programming approach for securing medical images using watermarking scheme in invariant discrete wavelet transformation. Biomed. Signal Process. Control 43, 31–40 (2018). https://doi.org/10.1016/j.bspc.2018.02.007

    Article  Google Scholar 

  16. Swaraja, K.: Medical image region-based watermarking for secured telemedicine. Multimed. Tools Appl. 77(21), 28249–28280 (2018). https://doi.org/10.1007/s11042-018-6020-7

    Article  Google Scholar 

  17. Sharma, A., Singh, A.K., Ghrera, S.P.: Robust and secure multiple watermarking for medical images. Wirel. Pers Commun. 92, 1611–1624 (2017). https://doi.org/10.1007/s11277-016-3625-x

    Article  Google Scholar 

  18. Mahesh Selvi, T., Kavitha, V.: A privacy-aware deep learning framework for health recommendation system on analysis of big data. Vis. Comput. (2021). https://doi.org/10.1007/s00371-020-02021-1

    Article  Google Scholar 

  19. Cedillo-Hernandez, M., Cedillo-Hernandez, A., Nakano-Miyatake, M., Perez-Meana, H.: Improving the management of medical imaging by using robust and secure dual watermarking. Biomed. Signal Process. Control 56, 101695 (2020). https://doi.org/10.1016/j.bspc.2019.101695

    Article  Google Scholar 

  20. Nuñez-Ramirez, D., Cedillo-Hernandez, M., Nakano-Miyatake, M., Perez-Meana, H.: Efficient management of ultrasound images using digital watermarking. IEEE Lat. Am. Trans. 18(08), 1398–1406 (2020). https://doi.org/10.1109/TLA.2020.9111675

    Article  Google Scholar 

  21. Kahlessenane, F., Khaldi, A., Kafi, R., et al.: A DWT based watermarking approach for medical image protection. J. Ambient Intell. Human Comput. (2020). https://doi.org/10.1007/s12652-020-02450-9

    Article  Google Scholar 

  22. Anand, A., Singh, A.K.: An improved DWT-SVD domain watermarking for medical information security. Comput. Commun. 152, 72–80 (2020). https://doi.org/10.1016/j.comcom.2020.01.038

    Article  Google Scholar 

  23. Swaraja, K., Meenakshi, K., Kora, P.: An optimized blind dual medical image watermarking framework for tamper localization and content authentication in secured telemedicine. Biomed. Signal Process. Control 55, 101665 (2020). https://doi.org/10.1016/j.bspc.2019.101665

    Article  Google Scholar 

  24. Su, G.D., Chang, C.C., Lin, C.C.: Effective self-recovery and tampering localization fragile watermarking for medical images. IEEE Access 8, 160840–160857 (2020). https://doi.org/10.1109/ACCESS.2020.3019832

    Article  Google Scholar 

  25. Geetha, R., Geetha, S.: Efficient high capacity technique to embed EPR information and to detect tampering in medical images. J. Med. Eng. Technol. 44(2), 55–68 (2020). https://doi.org/10.1080/03091902.2020.1718223

    Article  Google Scholar 

  26. Haddad, S., Coatrieux, G., Moreau-Gaudry, A., Cozic, M.: Joint watermarking-encryption-JPEG-LS for medical image reliability control in encrypted and compressed domains. IEEE Trans. Inf. Forensics Secur. 15, 2556–2569 (2020). https://doi.org/10.1109/TIFS.2020.2972159

    Article  Google Scholar 

  27. El-Tokhy, M.S.: Development of optimum watermarking algorithm for radiography images. Comput. Electr. Eng. 89, 106932 (2021). https://doi.org/10.1016/j.compeleceng.2020.106932

    Article  Google Scholar 

  28. Liu, J., et al.: Robust watermarking algorithm for medical volume data in internet of medical things. IEEE Access 8, 93939–93961 (2020). https://doi.org/10.1109/ACCESS.2020.2995015

    Article  Google Scholar 

  29. Gong, Z., Qin, N., Zhang, G.: Visible watermarking in document images using two-stage fuzzy inference system. Vis. Comput. (2021). https://doi.org/10.1007/s00371-020-02045-7

    Article  Google Scholar 

  30. Barni, M., Bartolini, F.: Applications. In: Watermarking Systems Engineering: Enabling Digital Assets Security and Other Applications, pp. 23–44. CRC Press, Boca Raton (2004). https://doi.org/10.1201/9780203913512

  31. Yuan, Z., Su, Q., Liu, D., et al.: A blind image watermarking scheme combining spatial domain and frequency domain. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01945-y

    Article  Google Scholar 

  32. Liu, D., Su, Q., Yuan, Z., et al.: A color watermarking scheme in frequency domain based on quaternary coding. Vis. Comput. (2020). https://doi.org/10.1007/s00371-020-01991-6

    Article  Google Scholar 

  33. Ahmadi, B.B.S., Zhang, G., Wei, S., et al.: An intelligent and blind image watermarking scheme based on hybrid SVD transforms using human visual system characteristics. Vis. Comput. 37, 385–409 (2021). https://doi.org/10.1007/s00371-020-01808-6

    Article  Google Scholar 

  34. Chuang, S.C., Huang, C.H., Wu, J.L.: Unseen visible watermarking. In: IEEE International Conference on Image Processing, 261–264. San Antonio, Texas (2007) https://doi.org/10.1109/ICIP.2007.4379296

  35. Huang, C.H., et al.: Unseen visible watermarking: a novel methodology for auxiliary information delivery via visual contents. IEEE Trans. Inf. Forensic Secur. 4(2), 193–206 (2009). https://doi.org/10.1109/TIFS.2009.2020778

    Article  Google Scholar 

  36. Lin, P.Y.: Imperceptible visible watermarking based on post camera histogram operation. J. Syst. Softw. 95, 194–208 (2014). https://doi.org/10.1016/j.jss.2014.04.038

    Article  Google Scholar 

  37. Juarez-Sandoval, U., et al.: Digital image ownership authentication via camouflaged unseen-visible watermarking. Multimed. Tools Appl. 77(20), 26601–26634 (2018). https://doi.org/10.1007/s11042-018-5881-0

    Article  Google Scholar 

  38. Pei, S.C., Wang, Y.Y.: Auxiliary metadata delivery in view synthesis using depth no synthesis error model. IEEE Trans. Multimed. 17(1), 128–133 (2015). https://doi.org/10.1109/TMM.2014.2368255

    Article  Google Scholar 

  39. Schneier, B.: Applied Cryptography, 2nd edn. Wiley, New York (1996)

    MATH  Google Scholar 

  40. Dobbertin, H., et al.: RIPEMD-160, a strengthened version of RIPEMD. In: Gollmann, D. (ed) Fast Software Encryption, LNCS, vol. 1039, pp. 71–82. Springer, Berlin (1996) https://doi.org/10.1007/3-540-60865-6_44

  41. Bosselaers, A., et al.: The RIPEMD-160 cryptographic hash function. Dr. Dobb’s J. 22(1), 24–28 (1997)

    Google Scholar 

  42. Sklar, B.: Digital Communications: Fundamentals and Applications, 2nd edn., System View (2001)

  43. Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good method for digital watermarking and information embedding. IEEE Trans. Inf. Theor. 47(4), 1423–1443 (2001). https://doi.org/10.1109/18.923725

    Article  MathSciNet  MATH  Google Scholar 

  44. Batson, B.H., Moorehead, R.W.: Simulation Results for the Viterbi Decoding Algorithm. NASA-TR-R-396, Technical report (1972)

  45. Tang, C.W., Hang, H.M.: A feature-based robust digital image watermarking scheme. IEEE Trans. Signal Process. 51(4), 950–959 (2003). https://doi.org/10.1109/TSP.2003.809367

    Article  MathSciNet  MATH  Google Scholar 

  46. Medixant. RadiAnt DICOM Viewer [Software]. Version 2020.2. Jul 19, 2020. https://www.radiantviewer.com

  47. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  48. Sheikh, H.R., Bovik, A.C.: Image information, and visual quality. IEEE Trans. Image Process 15(2), 430–444 (2006). https://doi.org/10.1109/TIP.2005.859378

    Article  Google Scholar 

  49. Chandler, D.M., Hemami, S.S.: VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Process. 16(9), 2284–2298 (2007). https://doi.org/10.1109/TIP.2007.901820

    Article  MathSciNet  Google Scholar 

  50. Watson, A.B.: DCT quantization matrices visually optimized for individual images. In: Proceedings of SPIE: Human Vision, Visual Processing, and Digital Display IV, vol. 1913, pp. 202–216 (1993) https://doi.org/10.1117/12.152694

Download references

Acknowledgements

Authors thank the Instituto Politecnico Nacional (IPN), the PAPIIT IT-101119 project research from DGAPA in the Universidad Nacional Autonoma de Mexico (UNAM), the Instituto Mexicano del Seguro Social (IMSS) of Mexico as well as the Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT) by the support provided during the realization of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Cedillo-Hernandez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mata-Mendoza, D., Cedillo-Hernandez, M., Garcia-Ugalde, F. et al. Secured telemedicine of medical imaging based on dual robust watermarking. Vis Comput 38, 2073–2090 (2022). https://doi.org/10.1007/s00371-021-02267-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02267-3

Keywords

Navigation