Skip to main content

Advertisement

Log in

Adaptive on-load tap-changing voltage control for active distribution networks

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The basic prerequisites for the correct operation of the classic on-load tap-changing voltage control (CVC) are that the distribution network (DN) is passive. However, by installing distributed generators (DGs), today's DNs become increasingly active. Consequently, by measuring only the current and voltage magnitudes at the on-load tap-changing transformer secondary side, its automatic voltage regulator receives a false image of the DN load. In such a case, it is impossible to determine the optimal voltage value at the transformer secondary side in all possible states. Therefore, the CVC must be adapted to the new situation. This paper presents a simple, efficient, and inexpensive adaptive on-load tap-changing voltage control (AVC) for active DN with DGs and customers placed on different feeders. The adaptation refers only to the false image of DN load correction, based on the DN load assessment without the influence of DG. Practically, this correction is realized by minimal investment into the existing equipment and infrastructure. Thus, complicated methods requiring an expensive upgrade of DN in terms of communication infrastructure expansion, installation of new sensors and control devices, their coordination, and integration with modern IT/OT systems are avoided. The verification of the AVC is performed in real-life in the real-world active DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AVC:

Adaptive on-load tap-changing voltage control

AVR:

Automatic voltage regulator

CVC:

Classic voltage control

DG:

Distributed generator

DMS:

Distribution management system

DN:

Distribution network

DPU:

Distribution power utility

HV:

High voltage

IT/OT:

Information technology/operational technology

LDC:

Line drop compensator

LV:

Low voltage

m.u.:

Money unit

MV:

Medium voltage

ODS EPS:

Distribution power utility of Serbia

OLTC:

On-load tap-changing

OLTCT:

On-load tap-changing transformer

p.u.:

Per unit

SCADA:

Supervisory control and data acquisition

B :

Susceptance of the feeder with DG

C :

Damage constant

cos φ :

Power factor value

\(\cos \,\varphi_{{\text{G}}}\) :

Of DGs

\(\cos \,\varphi_{{\text{L}}}\) :

Of the feeder with the consumer

\(\cos \,\varphi_{{{\text{Tr}}}}^{{\prime}}\) :

At the transformer primary side

\(\cos \,\varphi _{{{\text{Tr}}}}^{{\prime\prime}}\) :

At the transformer secondary side

D :

Damage that consumers suffer

E i :

Electric energy consumed in the period \(t_{i}\)

\(I\) :

Current value

\(I_{{{\text{ARN}}}}^{{\prime\prime}}\) :

Of total consumption

\(I_{{{\text{ARN}}}}\) :

Need to be forwarded to the AVR relay

\(I_{{\text{G}}}\) :

At the beginning of the feeder with DG

\(I_{{\text{G}}}^{{\prime}}\) :

At the end of the feeder with DG

\(I_{{\text{L}}}\) :

At the beginning of the feeder with the consumers

\(I_{{{\text{Tr}}}}^{{\prime}}\) :

At the transformer primary side

\(I_{{{\text{Tr}}}}^{{\prime\prime}}\) :

At the transformer secondary side

I Im :

Imaginary part of the current

I Re :

A real part of the current

\(I_{01} ,I_{02}\) :

At the feeder shunt admittances

\(I_{12}\) :

At the feeder impedance

l :

Feeder length

m :

Number of feeders with consumers

\(m_{12}\) :

Transformer turns ratio

n :

Number of feeders with DG

nm :

Number of measurements

P :

Active power value

\(P_{{{\text{Tr}}}}^{{\prime}}\) :

At the transformer primary side

\(P_{{{\text{Tr}}}}^{{\prime\prime}}\) :

At the transformer secondary side

Q :

Reactive powers

\(R,r\) :

Feeder resistance in Ω, per km

\(R_{{\text{e}}}\) :

Equivalent resistance of distribution network

S :

Complex power value

\(S_{{\text{G}}}^{{\prime}}\) :

At the end of the feeder with DG

\(S_{{\text{L}}}^{{\prime}}\) :

At the end of feeder with the consumer

\(S_{{{\text{Tr}}}}^{{\prime\prime}}\) :

At the transformer secondary side

S n :

Transformer rated power

T :

Tap changer position of the OLTCT

\(t_{i}\) :

Period of measurement

\(U\) :

Phase voltage value

\(U_{{{\text{comp}}}}\) :

Corrected (compensated) \(U_{{{\text{Tr}}}}^{{\prime\prime}}\)

U opt. :

Optimal value at the transformer secondary side

\(U_{{{\text{Tr}}}}^{{\prime}}\) :

At the transformer primary side

\(U_{{{\text{Tr}}}}^{{\prime\prime}}\) :

At the transformer secondary side

\(U_{{{\text{Tr}}\,{\text{max}}.}}^{{\prime\prime}}\) :

Maximum value at the transformer secondary side

u k :

Relative short-circuit voltage

\(X,x\) :

Feeder reactance in Ω, per km

\(X_{{\text{e}}}\) :

Equivalent reactance of distribution network

\(X_{k}^{{\prime\prime}}\) :

Short-circuit reactance

\(Z_{k}^{{\prime\prime}}\) :

Short-circuit impedance

\(\alpha\) :

Angle between the phasors of the currents at the beginning and the end of the feeder

\(\theta\) :

Phase shift of the voltage at the end of the feeder

φ :

Phase angle (current with respect to voltage)

\(\varphi_{{\text{G}}}\) :

At the DG

\(\varphi_{{\text{G}}}^{{\prime}}\) :

At the beginning of the feeder with DG

ψ :

Angle of the current phasor

\(\psi_{{{\text{Tr}}}}^{{\prime\prime}}\) :

At the transformer secondary side

\(\psi_{{\text{G}}}\) :

At the beginning of the feeder with DG

\(\psi_{{\text{G}}}^{{\prime}}\) :

At the end of the feeder with DG

\(\Delta U^{\prime\prime}\) :

Voltage deviation

\(\Delta U_{{{\text{Tr}}}}^{{\prime\prime}}\) :

Transformer voltage drop

\(V\) :

Line voltage value

\({\wedge}\) :

Complex value

References

  1. International Energy Agency, Energy Technology Perspectives 2017 (2017) Catalysing Energy Technology Transformations IEA. Jean-François Gagné, Head, Energy Technology Policy Division, 77-th CERT Meeting Paris, France

  2. Sansawatt T, Ochoa LF, Harrison GP (2010) Integrating distributed generation using decentralised voltage regulation. In: IEEE PES general meeting; providence, RI, USA, pp 1–6, DOI: https://doi.org/10.1109/PES.2010.5588127

  3. Hashim TJT, Mohamed A, Shareef H (2012) A review on voltage control methods for active distribution networks. In: Przeglad Elektrotechniczny (Electrical Review): Warszawa, Poland, pp 304–312

  4. CIRED Working Group on Smart Grids (2013) Smart Grids on the Distribution Level—Hype or Vision? CIRED's point of view; Final Report

  5. Antoniadou-Plytaria KE, Kouveliotis-Lysikatos IN, Georgilakis PS, Hatziargyriou ND (2017) Distributed and decentralized voltage control of smart distribution networks: models, methods, and future research. IEEE Trans Smart Grid 8(6):2999–3008. https://doi.org/10.1109/TSG.2017.2679238

    Article  Google Scholar 

  6. Feng C, Li Z, Shahidehpour M, Wen F, Liu W, Wang X (2018) Decentralized short-term voltage control in active power distribution systems. IEEE Trans Smart Grid 9(5):4566–4576. https://doi.org/10.1109/TSG.2017.2663432

    Article  Google Scholar 

  7. Christakou K, Paolone M, Abur A (2018) Voltage control in active distribution networks under uncertainty in the system model: a robust optimization approach. IEEE Trans Smart Grid 9(6):5631–5642. https://doi.org/10.1109/TSG.2017.2693212

    Article  Google Scholar 

  8. Liu HJ, Shi W, Zhu H (2018) Distributed voltage control in distribution networks: online and robust implementations. IEEE Trans Smart Grid 9(6):6106–6117. https://doi.org/10.1109/TSG.2017.2703642

    Article  Google Scholar 

  9. Bidgoli HS, Van Cutsem T (2018) Combined local and centralized voltage control in active distribution networks. IEEE Trans Power Syst 33(2):1374–1384. https://doi.org/10.1109/TPWRS.2017.2716407

    Article  Google Scholar 

  10. Guo Y, Wu Q, Gao H, Shen F (2019) Distributed voltage regulation of smart distribution networks: consensus-based information synchronization and distributed model predictive control scheme. Int J Electr Power Energy Syst 111:58–65. https://doi.org/10.1016/j.ijepes.2019.03.059

    Article  Google Scholar 

  11. Daratha N, Das B, Sharma J (2014) Coordination between OLTC and SVC for voltage regulation in unbalanced distribution system distributed generation. IEEE Trans Power Syst 29(1):289–299. https://doi.org/10.1109/TPWRS.2013.2280022

    Article  Google Scholar 

  12. Wang Y, Syed MH, Sansano EG, Xu Y (2019) Inverter-based voltage control of distribution networks: a three-level coordinated method and power hardware-in-the-loop validation. IEEE Trans Sustain Energy. https://doi.org/10.1109/TSTE.2019.2957010

    Article  Google Scholar 

  13. Fabio B, Roberto C, Valter P (2018) Radial MV networks voltage regulation with distribution management system coordinated controller. Electr Power Syst Res 78(4):634–645. https://doi.org/10.1016/j.epsr.2007.05.007

    Article  Google Scholar 

  14. Švenda G, Simendic Z, Strezoski V (2012) Advanced voltage control integrated in DMS. Int J Electr Power Energy Syst 43(1):333–343. https://doi.org/10.1016/j.ijepes.2012.05.014

    Article  Google Scholar 

  15. Švenda GS, Strezoski VC, Simendić ZJ, Mijatović VR (2009) Real-time voltage control integrated in DMS. In: 20th International conference on electricity distribution—CIRED, Prague, 8–11 June 2009, Session No. 3, Paper 0699, DOI: https://doi.org/10.1049/cp.2009.0930

  16. Švenda G, Strezoski V, Kanjuh S (2016) Real-life distribution state estimation integrated in the distribution management system. Int Trans Electr Energy Syst. https://doi.org/10.1002/etep.2296

    Article  Google Scholar 

  17. Viawan FA, Sannino A, Daalder J (2007) Voltage control with on-load tap changers in medium voltage feeders in presence of distributed generation. Electr Power Syst Res 77(10):1314–1322. https://doi.org/10.1016/j.epsr.2006.09.021

    Article  Google Scholar 

  18. Pelissier R (1971) Les reseaux d’énergie électrique—Tome 1. Dunod, Paris

    Google Scholar 

  19. Kersting WH (2012) Distribution system modeling and analysis. Chemical Rubber Company, Boca Raton

    MATH  Google Scholar 

  20. Gonen T (2008) Electric power distribution system engineering, 2nd edn. CRC Press, Cambridge

    Google Scholar 

  21. Senjyu T, Miyazato Y, Yona A, Urasaki N, Funabashi T (2008) Optimal distribution voltage control and coordination with distributed generation. IEEE Trans Power Deliv 23(2):1236–1242. https://doi.org/10.1109/TPWRD.2007.908816

    Article  Google Scholar 

  22. Pepermans G, Driesen J, Haeseldonckx D, Belmans R, D’haeseleer W (2005) Distributed generation: definition, benefits and issues. Energy Policy 33(6):787–798. https://doi.org/10.1016/j.enpol.2003.10.004

    Article  Google Scholar 

  23. Walling RA, Saint R, Dugan RC, Burke J, Kojovic LA (2008) Summary of distributed resources impact on power delivery systems. IEEE Trans Power Deliv 23(3):1636–1644. https://doi.org/10.1109/TPWRD.2007.909115

    Article  Google Scholar 

  24. Vovos PN, Kiprakis AE, Wallace A, Harrison G (2007) Centralized and distributed voltage control: Impact on distributed generation penetration. IEEE Trans Power Syst 22(1):476–483. https://doi.org/10.1109/TPWRS.2006.888982

    Article  Google Scholar 

  25. Ogunjuyigbe ASO, Ayodele TR, Akinola OO (2016) Impact of distributed generators on the power loss and voltage profile of sub-transmission network. J Electr Syst Inf Technol 3(1):94–107. https://doi.org/10.1016/j.jesit.2015.11.010

    Article  Google Scholar 

  26. Zhao H, Wu Q, Guo Q, Sun H, Huang S, Xue Y (2016) Coordinated voltage control of a wind farm based on model predictive control. IEEE Trans Sustain Energy 7(4):1440–1451. https://doi.org/10.1109/TSTE.2016.2555398

    Article  Google Scholar 

  27. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces (2018). IEEE Std 1547–2018, doi: https://doi.org/10.1109/IEEESTD.2018.8332112

  28. Zhou Q, Bialek JW (2007) Generation curtailment to manage voltage constraints in distribution networks. IET Gener Transm Distrib 1(3):492–498. https://doi.org/10.1049/iet-gtd:20060246

    Article  Google Scholar 

  29. Kim TE, Kim JE (2001) A method for determining the introduction limit of distributed generation system in the distribution system. In: Proceedings of 2001 IEEE PES summer meeting, vol 1, pp 456–461, doi: https://doi.org/10.1109/PESS.2001.970069

  30. Strezoski V, Katić N, Janjić D (2001) Voltage control integrated in distribution management systems. Electr Power Syst Res 60(2):85–97. https://doi.org/10.1016/S0378-7796(01)00172-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Simendić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A feeder with DG is considered, Fig. 

Fig. 14
figure 14

Feeder with DG

14. Currents and voltages phasors at the feeder with DG are shown in Fig. 

Fig. 15
figure 15

Currents and voltages phasors at the feeder with DG

15. For easy execution, the voltage phasor at the end of the feeder with DG is declared as the reference phasor \(\hat{U}_{{\text{G}}}^{{\prime}} = U_{{\text{G}}}^{{\prime}} \angle 0^{ \circ }\).

The complex current at the beginning of the feeder with DG, Fig. 14, is:

$$ \hat{I}_{{\text{G}}} = \hat{I}_{{\text{G}}}^{{\prime}} + \hat{I}_{01} + \hat{I}_{02} = \hat{I}_{G}^{{\prime}} + j0.5 \cdot B \cdot \left( {\hat{U}_{{{\text{Tr}}}}^{{\prime\prime}} + \hat{U}_{{\text{G}}}^{{\prime}} } \right). $$
(21)

For the consideration that follows, an innocuous approximation is introduced:

$$ \hat{I}_{01} \approx \hat{I}_{02} = j0.5 \cdot B \cdot U_{{{\text{Tr}}}}^{{\prime\prime}} . $$
(22)

Based on the phasors diagram, Fig. 15 follows the equality of the real parts of the current phasors at the beginning and the end of the feeder:

$$ {\text{Re}} \{ \hat{I}_{{\text{G}}} \} \approx {\text{Re}} \{ \hat{I}_{{\text{G}}}^{{\prime}} \} \;, $$
(23)
$$ I_{{\text{G}}} \cdot \cos (\pi - \varphi_{{\text{G}}}^{{\prime}} - \alpha ) \approx I_{{\text{G}}}^{{\prime}} \cdot \cos (\pi - \varphi_{{\text{G}}}^{{\prime}} ), $$
(24)

that is:

$$ - I_{{\text{G}}} \cdot \cos (\varphi_{{\text{G}}}^{{\prime}} + \alpha ) \approx - I_{{\text{G}}}^{{\prime}} \cdot \cos \varphi_{{\text{G}}}^{{\prime}} . $$
(25)

Based on the law of the cosines and the trigonometric shifts follow:

$$ [B \cdot U_{{{\text{Tr}}}}^{{\prime\prime}} ]^{2} = I_{{\text{G}}}^{2} + I_{{\text{G}}}^{{\prime} 2} - 2 \cdot I_{{\text{G}}} \cdot I_{{\text{G}}}^{{\prime}} \cdot \cos \alpha , $$
(26)
$$ \cos (\varphi_{{\text{G}}}^{{\prime}} + \alpha ) = \cos \alpha \cdot \cos \,\varphi_{{\text{G}}}^{{\prime}} - \sin \alpha \cdot \sin \,\varphi_{{\text{G}}}^{{ ^{\prime}}} . $$
(27)

By replacing Eq. (27) into Eq. (25), the current magnitude at the end of the feeder with DG is as follows:

$$ I_{{\text{G}}}^{{\prime}} = I_{{\text{G}}} \cdot \left[ {\cos \alpha - \sin \alpha \cdot tg\varphi_{{\text{G}}}^{{\prime}} } \right]. $$
(28)

By replacing Eq. (28) into Eq. (26) follows:

$$ \begin{aligned} \left[ {B \cdot U_{{{\text{Tr}}}}^{{\prime\prime}} } \right]^{2} & = I_{{\text{G}}}^{2} \cdot \left[ {1 - \cos^{2} \alpha - \sin^{2} \alpha \cdot tg^{2} \varphi_{{\text{G}}}^{{\prime}} } \right] \\ & = I_{{\text{G}}}^{2} \cdot \sin^{2} \cdot \left[ {1 + tg^{2} \varphi_{{\text{G}}}^{{\prime}} } \right] = I_{{\text{G}}}^{2} \cdot \sin^{2} \alpha \cdot \cos^{ - 2} \varphi_{{\text{G}}}^{{\prime}} . \\ \end{aligned} $$
(29)

From Eq. (29), the value of the angle α, between the current phasors at the beginning and the end of the feeder, is defined:

$$ \sin^{2} \alpha = \frac{{B^{2} \cdot U_{{{\text{Tr}}}}^{{\prime\prime} 2} }}{{I_{{\text{G}}}^{2} \cdot \left[ {1 + tg^{2}\varphi{\prime}_{{\text{G}}}} \right]}} = \frac{{B^{2} \cdot U_{{{\text{Tr}}}}^{{\prime\prime} 2} }}{{I_{{\text{G}}}^{2} }} \cdot \cos^{2} \varphi_{{\text{G}}}^{{\prime}} . $$
(30)

Mathematically, the previous equation has two solutions, \(\pm \alpha\). Practically, the current at the beginning of the feeder, with DG and no customers, is the leading one over the current at its end. So, there is only one physically applicable solution:

$$ \alpha = \arcsin \;\left[ {\frac{{B \cdot U_{{{\text{Tr}}}}^{{\prime\prime}} }}{{I_{{\text{G}}} }} \cdot \cos \varphi_{{\text{G}}}^{{\prime}} } \right]. $$
(31)

Based on the phasors diagram, Fig. 15, Eq. (24) and the known value of the angle α, a current phasor at the beginning of the feeder with DG is defined:

$$ \hat{I}_{{\text{G}}} = - I_{{\text{G}}} \cdot \cos (\varphi_{{\text{G}}}^{{\prime}} + \alpha ) + jI_{{\text{G}}} \cdot \sin (\varphi_{{\text{G}}}^{{\prime}} + \alpha ). $$
(32)

Based on Fig. 15 and Kirchhoff's current and voltage laws:

$$ \hat{U}_{{{\text{Tr}}}}^{{\prime\prime}} - U_{{\text{G}}}^{{\prime}} - \hat{Z} \cdot \hat{I}_{12} = 0, $$
(33)
$$ \hat{I}_{12} = I^{{\text{Re}}} + jI^{{\text{Im}}} = \hat{I}_{{\text{G}}} - j0.5 \cdot B \cdot U_{{{\text{Tr}}}}^{{\prime\prime}} , $$
(34)

follows a system of two equations with two unknown values \(\theta\) and \(U_{{\text{G}}}^{{\prime}}\):

$$ {\text{Re}}:\quad U_{{{\text{Tr}}}}^{{\prime\prime}} \cdot \cos \theta - R \cdot I_{12}^{{{\text{Re}}}} + X \cdot I_{12}^{{{\text{Im}}}} = U_{{\text{G}}}^{{\prime}} , $$
(35)
$$ {\text{Im}}:\quad U_{{{\text{Tr}}}}^{{\prime\prime}} \cdot \sin \theta - X \cdot I_{12}^{{{\text{Re}}}} - R \cdot I_{12}^{{{\text{Im}}}} = 0. $$
(36)

Equation (36) gives the value of the phase shift of the voltage at the end of the feeder θ, related to the voltage at its beginning:

$$ \theta = - \arcsin \;\left[ {\frac{{X \cdot I_{12}^{{\text{Re}}} + R \cdot I_{12}^{{\text{Im}}} }}{{U_{{{\text{Tr}}}}^{{\prime\prime}} }}} \right]. $$
(37)

The value of the voltage at the end of the feeder with DG \(U_{{\text{G}}}^{{\prime}}\) is defined based on Eq. (35).

The previous equations and Fig. 15 are in accordance with \(\hat{U}_{{\text{G}}}^{{\prime}} = U_{{\text{G}}}^{{\prime}} \angle 0^{ \circ }\). To correctly processed the current phasors at the beginning of the feeders with DG and the transformer secondary side, it is necessary for them to be expressed in relation to a common reference phasor. If a voltage phasor at the transformer secondary side is declared as the reference phasor \(\hat{U}_{{{\text{Tr}}}}^{{\prime\prime}} = U_{{{\text{Tr}}}}^{{\prime\prime}} \angle 0^{ \circ }\), then the current phasor at the beginning of the feeder with DG is defined as:

$$ \hat{I}_{{\text{G}}} = - I_{{\text{G}}} \cos (\varphi_{{\text{G}}}^{{\prime}} + \alpha - \theta ) + jI_{{\text{G}}} \sin (\varphi_{{\text{G}}}^{{\prime}} + \alpha - \theta ), $$
(38)
$$ \psi_{{\text{G}}} \approx \pi - \varphi_{{\text{G}}}^{{\prime}} - \alpha + \theta . $$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švenda, G., Simendić, Z. Adaptive on-load tap-changing voltage control for active distribution networks. Electr Eng 104, 1041–1056 (2022). https://doi.org/10.1007/s00202-021-01357-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01357-8

Keywords

Navigation