Skip to main content
Log in

Robust topology optimization with low rank approximation using artificial neural networks

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a low rank approximation approach for topology optimization of parametrized linear elastic structures. The parametrization is considered on loading and stiffness of the structure. The low rank approximation is achieved by identifying a parametric connection among coarse finite element models of the structure (associated with different design iterates) and is used to inform the high fidelity finite element analysis. We build an Artificial Neural Network (ANN) map between low resolution design iterates and their corresponding interpolative coefficients (obtained from low rank approximations) and use this surrogate to perform high resolution parametric topology optimization. We demonstrate our approach on robust topology optimization with compliance constraints/objective functions and develop error bounds for the the parametric compliance computations. We verify these parametric computations with more challenging quantities of interest such as the p-norm of von Mises stress. To conclude, we use our approach on a 3D robust topology optimization and show significant reduction in computational cost via quantitative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. As an example, if \({\varvec{X}}_{in}\) is an image with \(100 \times 100\) pixels (cells) and \(k_n=10\), an arbitrary index set for \(\mathcal {I}\) and \(\mathcal {J}\) could be \(\mathcal {I}=\{1,2,\ldots ,10\}\) and \(\mathcal {J}=\{11,12,\ldots ,20\}\).

References

  1. Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li L, Kato J, Tang J, Wang CC, Lin C, Xuan L, To AC (2018) Current and future trends in topology optimization for additive manufacturing. Struct Multidiscip Optim 57(6):2457–2483

    Article  Google Scholar 

  2. Torii AJ, Lopez RH, Miguel LFF (2017) A gradient-based polynomial chaos approach for risk and reliability-based design optimization. J Braz Soc Mech Sci Eng 39(7):2905–2915

    Article  Google Scholar 

  3. Bendsøe MP, Kikuchi N (2016) Robust shape optimization of continuous structures via the level set method. Comput Methods Appl Mech Eng 305:271–291

    Article  MathSciNet  Google Scholar 

  4. Keshavarzzadeh V, Meidani H, Tortorelli DA (2016) Gradient based design optimization under uncertainty via stochastic expansion methods. Comput Methods Appl Mech Eng 306:47–76

    Article  MathSciNet  MATH  Google Scholar 

  5. Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147

    Article  MathSciNet  MATH  Google Scholar 

  6. Martinez-Frutos J, Herrero-Perez D, Kessler M, Periago F (2018) Risk-averse structural topology optimization under random fields using stochastic expansion methods. Comput Methods Appl Mech Eng 330:180–206

    Article  MathSciNet  MATH  Google Scholar 

  7. Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct Multidiscip Optim 46(4):597–612

    Article  MathSciNet  MATH  Google Scholar 

  8. Rostami SA, Ghoddosian A (2018) Topology optimization of continuum structures under hybrid uncertainties. Struct Multidiscip Optim 57(6):2399–2409

    Article  MathSciNet  Google Scholar 

  9. Guo X, Zhao X, Zhang W, Yan J, Sun G (2015) Multi-scale robust design and optimization considering load uncertainties. Comput Methods Appl Mech Eng 283:994–1009

    Article  MathSciNet  MATH  Google Scholar 

  10. Martínez-Frutos J, Herrero-Pérez D (2018) Evolutionary topology optimization of continuum structures under uncertainty using sensitivity analysis and smooth boundary representation. Comput Struct 205:15–27

    Article  Google Scholar 

  11. Zhao Q, Chen X, Ma ZD, Lin Y (2015) Robust topology optimization based on stochastic collocation methods under loading uncertainties. Math Probl Eng 2015:580980. https://doi.org/10.1155/2015/580980

  12. Shintani K, Chan Y-C, Chen W (2017) Robust multi-material topology optimization for lattice structure under material uncertainties. In: Advances in structural and multidisciplinary optimization. WCSMO, pp 1110–1123

  13. Kang Z, Wu C, Luo Y, Li M (2019) Robust topology optimization of multi-material structures considering uncertain graded interface. Compos Struct 208:395–406

    Article  Google Scholar 

  14. Zhang X, He J, Takezawa A, Kang Z (2018) Robust topology optimization of phononic crystals with random field uncertainty. Int J Numer Methods Eng 115(9):1154–1173

    Article  MathSciNet  Google Scholar 

  15. Xu Y, Gao Y, Wu C, Fang J, Li Q (2019) Robust topology optimization for multiple fiber-reinforced plastic (frp) composites under loading uncertainties. Struct Multidiscip Optim 59:695–711

    Article  Google Scholar 

  16. Keshavarzzadeh V, James KA (2019) Robust multiphase topology optimization accounting for manufacturing uncertainty via stochastic collocation. Struct Multidiscip Optim 60:2461–2476

    Article  MathSciNet  Google Scholar 

  17. Kapteyn MG, Willcox KE, Philpott AB (2019) Distributionally robust optimization for engineering design under uncertainty. Int J Numer Methods Eng 120(7):835–859

    Article  MathSciNet  Google Scholar 

  18. da Silva GA, Beck AT (2018) Reliability-based topology optimization of continuum structures subject to local stress constraints. Struct Multidiscip Optim 57:2339–2355

    Article  MathSciNet  Google Scholar 

  19. Wang L, Jinxiong L, Wenpin C, Zhiping Q (2019) A nonprobabilistic reliability-based topology optimization method of compliant mechanisms with interval uncertainties. Int J Numer Methods Eng 119(13):1419–1438

    Article  MathSciNet  Google Scholar 

  20. Keshavarzzadeh V, Ghanem RG, Tortorelli DA (2019) Shape optimization under uncertainty for rotor blades of horizontal axis wind turbines. Comput Methods Appl Mech Eng 354:271–306

    Article  MathSciNet  MATH  Google Scholar 

  21. Hao P, Wang Y, Ma R, Liu H, Wang B, Li G (2019) A new reliability-based design optimization framework using isogeometric analysis. Comput Methods Appl Mech Eng 345:476–501

    Article  MathSciNet  MATH  Google Scholar 

  22. Guest JK, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198(1):116–124

    Article  MathSciNet  MATH  Google Scholar 

  23. Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness - application to truss structures. Comput Struct 89(11):1131–1141

    Article  Google Scholar 

  24. Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7(4):991–1016

    Article  MathSciNet  MATH  Google Scholar 

  25. Lógó J (2007) New type of optimality criteria method in case of probabilistic loading conditions. Mech Des Struct Mach 35(2):147–162

    Article  Google Scholar 

  26. Lógó J, Ghaemi M, Rad MM (2009) Optimal topologies in case of probabilistic loading: the influence of load correlation. Mech Des Struct Mach 37(3):327–348

    Article  Google Scholar 

  27. Guilleminot J, Asadpoure A, Tootkaboni M (2019) Topology optimization under topologically dependent material uncertainties. Struct Multidiscip Optim 60:1283–1287

    Article  Google Scholar 

  28. De S, Hampton J, Maute K, Doostan A (2020) Topology optimization under uncertainty using a stochastic gradient-based approach. Struct Multidiscip Optim 62:2255–2278

    Article  MathSciNet  Google Scholar 

  29. De S, Maute K, Doostan A (2020) Bi-fidelity stochastic gradient descent for structural optimization under uncertainty. Comput Mech 66:745–771

    Article  MathSciNet  MATH  Google Scholar 

  30. Li W, Zhang XS (2021) Momentum-based accelerated mirror descent stochastic approximation for robust topology optimization under stochastic loads. Int J Numer Methods Eng 1–27. https://doi.org/10.1002/nme.6672

  31. Hoang VN, Pham T, Tangaramvong S, Bordas S, Robust Nguyen-Xuan H (2021) adaptive topology optimization of porous infills under loading uncertainties. Struct Multidiscip Optim 63:2253–2266

    Article  Google Scholar 

  32. Hesthaven JS, Ubbiali S (2018) Non-intrusive reduced order modeling of nonlinear problems using neural networks. J Comput Phys 363:55–78

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu C, Zhu X (February 2019) Bifidelity data-assisted neural networks in nonintrusive reduced-order modeling. arXiv:1902.00148 [cs, stat]

  34. De S, Britton J, Reynolds M, Skinner R, Jansen K, Doostan A (2020) On transfer learning of neural networks using bi-fidelity data for uncertainty propagation. Int J Uncertainty Quant 10:543–573

    Article  MathSciNet  Google Scholar 

  35. Brenner MP, Eldredge JD, Freund JB (2019) Perspective on machine learning for advancing fluid mechanics. Phys Rev Fluids 4:100501

    Article  Google Scholar 

  36. Kutz JN (2017) Deep learning in fluid dynamics. J Fluid Mech 814:1–4

    Article  MATH  Google Scholar 

  37. Ayhan T, Karlik B, Tiroglu A (2004) Flow geometry optimization of channels with baffles using neural networks and second law of thermodynamics. Comput Mech 33:139–143

    Article  Google Scholar 

  38. Yang Y, Perdikaris P (2019) Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems. Comput Mech 64:417–434

    Article  MathSciNet  MATH  Google Scholar 

  39. Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA (2019) Deep learning predicts path-dependent plasticity. Proc Natl Acad Sci 116(52):26414–26420

    Article  Google Scholar 

  40. Butler KT, Davies DW, Hugh C, Olexandr I, Aron W (2018) Machine learning for molecular and materials science. Nature 559:547–555

    Article  Google Scholar 

  41. Brunton SL, Kutz JN (2019) Methods for data-driven multiscale model discovery for materials. J Phys Mater 2:044002

  42. Jain AK, Duin RPW, Jianchang Mao (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  43. van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9:2579–2605

  44. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    Article  MathSciNet  MATH  Google Scholar 

  45. Ozbayoglu AM, Gudelek MU, Sezer OB (2020) Deep learning for financial applications: a survey. arXiv preprint, arXiv:2002.05786

  46. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707

    Article  MathSciNet  MATH  Google Scholar 

  47. Raissi M, Karniadakis GE (2018) Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys 357:125–141

    Article  MathSciNet  MATH  Google Scholar 

  48. Kharazmi E, Zhang Z, Karniadakis GE (2019) Variational physics-informed neural networks for solving partial differential equations. arxiv:1912.00873

  49. Haghighat E, Raissi M, Moure A, Gomez H, Juanesa R (2020) A deep learning framework for solution and discovery in solid mechanics: linear elasticity. arXiv preprint arXiv:2003.02751

  50. Zhanga Y, Penga B, Zhoua X, Xianga C, Wang D (2019) A deep convolutional neural network for topology optimization with strong generalization ability. arXiv preprint, arXiv:1901.07761

  51. Sosnovika I, Oseledets I (2017) Neural networks for topology optimization. arXiv preprint, arXiv:1709.09578

  52. Keshavarzzadeh V, Alirezaei M, Tasdizen T, Kirby RM (2021) Image-based multiresolution topology optimization using deep disjunctive normal shape model. Computer-Aided Des 130 (102947)

  53. Napier N, Sriraman S-A, Tran HT, James KA (2019) An artificial neural network approach for generating high-resolution designs from low-resolution input in topology optimization. J Mech Des 142(1):10

    Google Scholar 

  54. Li B, Huang C, Li X, Zheng S, Hong J (2019) Non-iterative structural topology optimization using deep learning. Comput-Aided Des 115:172–180

    Article  Google Scholar 

  55. Cang R, Yao H, Ren Y (2019) One-shot generation of near-optimal topology through theory-driven machine learning. Computer-Aided Des 109:12–21

  56. Oh S, Jung Y, Kim S, Lee I, Kang N (2019) Deep generative design: integration of topology optimization and generative models. J Mech Des 141(11):09

    Article  Google Scholar 

  57. Cheng J, Li QS (2009) A hybrid artificial neural network method with uniform design for structural optimization. Comput Mech 44:61–71

    Article  MathSciNet  MATH  Google Scholar 

  58. Li H, Kafka OL, Gao J, Yu C, Nie Y, Lei Z, Mahsa T, Shan T, Guo X, Gang L, Shaoqiang T, Gengdong C, Kam LW (2019) Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Comput Mech 64:281–305

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiu D, Hesthaven J (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  MathSciNet  MATH  Google Scholar 

  60. Keshavarzzadeh V, Kirby Robert M, Narayan A (2018) Numerical integration in multiple dimensions with designed quadrature. SIAM J Sci Comput 40(4):A2033–A2061

    Article  MathSciNet  MATH  Google Scholar 

  61. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  62. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  63. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  64. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  65. Keshavarzzadeh V, Robert KM, Narayan A (2019) Parametric topology optimization with multiresolution finite element models. Int J Numer Methods Eng 119(7):567–589

    Article  MathSciNet  Google Scholar 

  66. Wang Q, Hesthaven JS, Deep R (2019) Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J Comput Phys 384:289–307

    Article  MathSciNet  MATH  Google Scholar 

  67. Schmidt E (1907) On the theory of linear and nonlinear integral equations. Part i. Development of arbitrary function according to systems prescribed. Math Ann 63:433–476

    Article  MathSciNet  Google Scholar 

  68. Eckart C, Young MG (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218

    Article  MATH  Google Scholar 

  69. Keshavarzzadeh V, Kirby RM, Narayan A (2019) Convergence acceleration for time-dependent parametric multifidelity models. SIAM J Numer Anal 57(3):1344–1368

    Article  MathSciNet  MATH  Google Scholar 

  70. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  71. Goodfellow I, Bengio Y, Courville A (2017) Deep learning. MIT press

  72. Martín AA, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mane D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viegas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2016) Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint, arXiv:1603.04467

  73. LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361(10)

  74. Qin T, Wu K, Xiu D (2019) Data driven governing equations approximation using deep neural networks. J Comput Phys 395:620–635

    Article  MathSciNet  MATH  Google Scholar 

  75. Teckentrup AL, Jantsch P, Webster CG, Gunzburger M (2015) A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA J Uncertainty Quant 3(1):1046–1074

    Article  MathSciNet  MATH  Google Scholar 

  76. Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  77. Andreassen E, Clausen A, Schevenels M, Boyan LS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  MATH  Google Scholar 

  78. Keshavarzzadeh V, Robert KM, Narayan A (2020) Stress-based topology optimization under uncertainty via simulation-based Gaussian process. Comput Methods Appl Mech Eng 365:112992

  79. Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  80. Liu K, Tovar A (2014) An efficient 3d topology optimization code written in matlab. Struct Multidiscip Optim 50:1175–1196

  81. Zegard T, Paulino Glaucio H (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscip Optim 53(1):175–192

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Army Research Laboratory (ARL) under Cooperative Agreement Number W911NF-12-2-0023. The first and third authors were partially supported by the Air Force Office of Scientific Research under grant FA9550-20-1-0338. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARL or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Keshavarzzadeh.

Ethics declarations

Conflict of Interest

All authors hereby declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzzadeh, V., Kirby, R.M. & Narayan, A. Robust topology optimization with low rank approximation using artificial neural networks. Comput Mech 68, 1297–1323 (2021). https://doi.org/10.1007/s00466-021-02069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02069-3

Keywords

Navigation