Skip to main content
Log in

Autosoliton View of the Seismic Process. Part 1. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

This article has been updated

Abstract

A new autosoliton view is developed for the seismic process. In physical terms, faults correspond to stationary autosolitons, and inter- and intrafault deformation disturbances are traveling autosolitons. Slow dynamics reveals itself only on large time scales because slow autosoliton disturbances, as a rule, have velocities 4–7 orders of magnitude lower than the sound velocity. It is shown that, in the loaded strong medium, slow autowave and autosoliton disturbances are generated by short dynamic actions (pulses) at interfaces. In real geomaterials, these are block boundaries and various-scale faults. Dynamic movements of structural elements cause the deformation autowaves and autosolitons to propagate from the interfaces into blocks and along faults. Velocities of such deformation autowaves and autosolitons are low and proportional to velocities of the related movements of structural elements in the geomedium. Propagating in structural elements that are in a certain stress-strain state, deformation autowaves and autosolitons can be taken as small disturbances of the existing fields of the stress-strain state. A mathematical model is represented for the geomaterial treated as a nonequilibrium randomly inhomogeneous medium. Special features of the generation and propagation of deformation autosolitons in such media are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Change history

  • 31 August 2021

    Corrected issue title

REFERENCES

  1. Guberman, Sh.A., On Some Regularities of the Occurrence of Earthquakes, Dokl. AN SSSR, 1975, vol. 224, no. 3, pp. 573–576.

    Google Scholar 

  2. Guberman, Sh.A., D Waves and Earthquakes, Comput. Seism. Geodyn., 1980, no. 12, p. 136.

    Google Scholar 

  3. Zhadin, V.V., Spatiotemporal Connections of Strong Earthquakes, Fiz. Zemli, 1984, no. 1, pp. 34–38.

    Google Scholar 

  4. Mukhamediev, Sh.A., Grachev, A.F., and Yunga, S.L., Nonstationary Dynamic Control of Seismic Activity of Platform Regions by Mid-Ocean Ridges, Izv. Phys. Solid Earth, 2008, vol. 44, no. 1, pp. 9–17.

    Article  ADS  Google Scholar 

  5. Trofimenko, S.V. and Grib, N.N., Dynamics of Geophysical Medium Parameters in the Zones of Active Faults in South Yakutia, in Modern Geodynamics of Central Asia and Hazardous Natural Processes: Results of Studies on Quantitatries, 19–23.09.2016, Irkutsk, Irkutsk: IEC SB RAS, 2016, pp. 294–296.

  6. Richter, C.F., Elementary Seismology, San Francisco: W.H. Freeman and Co., 1958.

  7. Allen, C.R., Active Faulting in Northern Turkey, Contribution No. 1577, Pasadena: Division of Geological Sciences of California Institute of Technology, 1969, pp. 32–34.

  8. Klyuchevskii, A.V., Dembrel, S., Demyanovich, V.M., and Bayaraa, G., Diagnostics of the Stress State of the Lithosphere in Mongolia Based on Seismic Source Data, Dokl. Earth Sci., 2017, vol. 473, no. 2, pp. 433–437.

    Article  ADS  Google Scholar 

  9. Ruzhich, V.V. and Levina, E.A., Seismomigrational Processes as the Reflection of Internal Dynamics in Zones of Intraplate and Interpolate Faults, in Recent Geodynamics of Central Asia and Hazardous Natural Processes: Results of Quantitive Studies. Proceedings of the All-Russia Meeting and Youth School on Recent Geodynamics, 23–29.09.2012, Irkutsk, Irkutsk: IEC SB RAS, 2012, vol. 2, pp. 71–74.

  10. Sherman, S.I., Deformation Waves as a Trigger Mechanism of Seismic Activity in Seismic Zones of the Continental Lithosphere, Geodyn. Tectonophys., vol. 4, no. 2, pp. 83–117.

  11. Goldin, S.V., Yushin, V.I., Ruzhich, V.V., and Smekalkin, O.P., Slow Movements—Myth or Reality?, in Physical Fundamentals of Rock Destruction Prediction: Proc. of the 9th Int. Workshop, Krasnoyarsk, 2002, pp. 213–220.

  12. Bykov, V.G., Deformation Waves of the Earth: Concept, Observations, and Models, Geolog. Geofiz., 2005, vol. 46, no. 11, pp. 1176–1190.

    Google Scholar 

  13. Bykov, V.G., Prediction and Observation of Strain Waves in the Earth, Geodyn. Tectonophys., 2018, vol. 9, no. 3, pp. 721–754. https://doi.org/10.5800/GT-2018-9-3-0369

    Article  Google Scholar 

  14. Kuzmin, Yu.O., Recent Geodynamics of Fault Zones, Izv. Phys. Solid Earth, 2004, vol. 40, no. 10. pp. 868–882.

    Google Scholar 

  15. Kuzmin, Yu.O., Tectonophysics and Recent Geodynamics, Izv. Phys. Solid Earth, 2009, vol. 45, no. 11, pp. 973–986.

    Article  ADS  Google Scholar 

  16. Kuzmin, Yu.O., Deformation Autowaves in Fault Zones, Izv. Phys. Solid Earth, 2012, vol. 48, no. 1, pp. 1–16.

    Article  ADS  Google Scholar 

  17. Kuzmin, Yu.O., Recent Geodynamics of Fault Zones: Faulting in Real Time Scale, Geodyn. Tectonophys., 2014, vol. 5, no. 2, pp. 401–442. https://doi.org/10.5800/GT-2014-5-2-0135

    Article  Google Scholar 

  18. Kuzmin, Yu.O., Recent Geodynamics and Slow Deformation Waves, Izv. Phys. Solid Earth, 2020, vol. 56, no. 4, pp. 595–603.

    Article  ADS  Google Scholar 

  19. Bazavluk, T.A. and Yudakhin, F.N., Deformation Waves in the Earth’s Crust of the Tien Shan According to Seismological Data, Dokl. RAN, 1993, vol. 329, no. 5, pp. 565–570.

    Google Scholar 

  20. Trofimenko, S.V., Bykov, V.G., and Grib, N.N., Slow Deformation Waves in the Seismic Regime and Geophysical Fields at the Northern Margin of the Amur Plate, Geodyn. Tectonophys., 2018, vol. 9, no. 2, pp. 413–426. https://doi.org/10.5800/GT-2018-9-2-0353

    Article  Google Scholar 

  21. Ida, Y., Slow-Moving Deformation Pulses along Tectonic Faults, Phys. Earth Planet. Int., 1974, vol. 9, pp. 328–337.

    Article  ADS  Google Scholar 

  22. Levina, E.A. and Ruzhich, V.V., The Seismicity Migration Study Based on Space-Time Diagrams, Geodyn. Tectonophys., 2015, vol. 6, no. 2, pp. 225–240.

    Article  Google Scholar 

  23. Bykov, V.G. and Trofimenko, S.V., Slow Strain Waves in Blocky Geological Media From GPS and Seismological Observations on the Amurian Plate, Nonlin. Process. Geophys., 2016, vol. 23, no. 6, pp. 467–475.

    Article  ADS  Google Scholar 

  24. Androsov, I.V., Zhadin, V.V., and Potashnikov, I.A., Spatiotemporal Structure of Earthquake Migration and Seismic Belts, Dokl. AN SSSR, 1989, vol. 306, no. 6, pp. 1339–1342.

    ADS  Google Scholar 

  25. Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., and Hirata, N., Propagation of Slow Slip Leading up to the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, 2012, vol. 335, no. 6069, pp. 705–708.

    Article  ADS  Google Scholar 

  26. Kocharyan, G.G., Triggering of Natural Disasters and Technogenous Emergencies by Low Amplitude Seismic Waves, Geol. Eng. Geol. Hydrogeol. Geocryol., 2012, vol. 6, pp. 483–496.

    Google Scholar 

  27. Sherman, S.I. and Gorbunova, E.A., Variation and Origin of Fault Activity of the Baikal Rift System and Adjacent Territories in Real Time, Earth Sci. Front., 2008, vol. 15, no. 3, pp. 337–347.

    Article  ADS  Google Scholar 

  28. Toksöz, M.N., Shakal, A.F., and Michael, A.J., Space-Time Migration of Earthquakes along the North Anatolian Fault Zone and Seismic Gaps, Pure Appl. Geophys., 1979, vol. 117, no. 6, pp. 1258–1270. https://doi.org/10.1007/BF00876218

    Article  ADS  Google Scholar 

  29. Savage, J.C., A Theory of Creep Waves Propаgating along a Transform Fault, J. Geophys. Res., 1971, vol. 76, no. 8, pp. 1954–1966.

    Article  ADS  Google Scholar 

  30. Bornyakov, S.A., Salko, D.V., Seminsky, K.Zh., Demberel, S., Ganzorig, D., Batsaihan, T., and Togtohbayar, S., Instrumental Recording of Slow Deformation Waves in the South Baikal Geodynamic Study Site, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 371–374. https://doi.org/10.1134/S1028334X17030229

    Article  ADS  Google Scholar 

  31. Trofimenko, S.V. and Grib, N.N., Non-Tidal Changes in Gravity in the Zones of Influence of Modern Activated Faults, in Problems of Seismology in the Third Millennium: Proceedings of the International Conference, 15–19.09.2003, Novosibirsk, Novosibirsk: Publishing House SB RAS, 2003, pp. 271–274.

  32. Kerner, B.S. and Osipov, V.V., Autosolitons, Sov. Phys. Usp., 1989, vol. 32, no. 2, pp. 101–138.

    Article  ADS  Google Scholar 

  33. Vasiliev, V.A., Romanovskii, Yu.M., and Yakhno, V.G., Autowave Processes in Distributed Kinetic Systems, Sov. Phys. Usp., 1979, vol. 22, no. 8, pp. 615–639.

    Article  ADS  Google Scholar 

  34. Masterov, A.V., Tolkov, V.N., and Yakhno, V.G., Nonlinear Waves: Dynamics and Evolution, New York: Springer-Verlag, 1988.

  35. Makarov, P.V. and Peryshkin, A.Yu., Slow Motions as Inelastic Strain Autowaves in Ductile and Brittle Media, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 209–221. https://doi.org/10.1134/S1029959917020114

    Article  Google Scholar 

  36. Makarov, P.V., Khon, Yu.A., and Peryshkin, A.Yu., Slow Deformation Fronts: Model and Features of Distribution, Geodyn. Tectonophys., 2018, vol. 9, no. 3, pp. 755–769. https://doi.org/10.5800/GT-2018-9-3-0370

    Article  Google Scholar 

  37. Bykov, V.G., Nonlinear Waves and Solitons in Models of Fault-Block Geological Media, Russ. Geol. Geophys., 2015, vol. 56, no. 5, pp. 793–803.

    Article  ADS  Google Scholar 

  38. Novopashina, А.V. and San’kov, V.А., Velocities of Slow Migration of Seismic Activity in Cis-Baikal Region, Geodyn. Tectonophys., 2010, vol. 1, no. 2, pp. 197–203.

    Article  Google Scholar 

  39. Kasahara, K., Migration of Crustal Deformation, Tectonophysics, 1979, vol. 52, no. 1–4, pp. 329–341.

    Article  ADS  Google Scholar 

  40. Makarov, P.V. and Peryshkin, A.Yu., Autosoliton Model of Slow Deformation Processes in Active Media, AIP Conf. Proc., 2019, vol. 2167, p. 020210. https://doi.org/10.1063/1.5132077

    Article  Google Scholar 

  41. Nikolaevskii, V.N., Mathematical Modeling of Solitary Deformation and Seismic Waves, Dokl. RAN, 1995, vol. 341, no. 3, pp. 403–405.

    MathSciNet  Google Scholar 

  42. Nikolaevskii, V.N., Elastic and Viscous Models of Tectonic and Seismic Waves in the Lithosphere, Fiz. Zemli, 2008, no. 6, pp. 92–96.

    Google Scholar 

  43. Mikhailov, D.N. and Nikolaevskii, V.N., Tectonic Waves of the Rotational Type Generating Seismic Signals, Izv. Phys. Solid Earth, 2000, vol. 36, no. 11, pp. 895–902.

    Google Scholar 

  44. Gershenzan, N.I., Bykov, V.G., and Bambakidis, G., Strain Waves, Earthquakes, Slow Earthquakes and Afterslip in the Framework of the Frenkel–Kontorova Model, Phys. Rev. E, vol. 79, no. 5, p. 056601.

  45. Bykov, V.G., Sine-Gordon Equation and Its Application to Tectonic Stress Transfer, J. Seismology, 2014, vol. 18, no. 3, pp. 497–510. https://doi.org/10.1007/s10950-014-9422-7

    Article  ADS  Google Scholar 

  46. Bykov, V.G., Development of Sliding Regimes in Faults and Slow Strain Waves, Phys. Mesomech., 2020, vol. 23, no. 3, pp. 271–278. https://doi.org/10.1134/S1029959920030121

    Article  Google Scholar 

  47. Makarov, P.V., Smolin, I.Yu., Khon, Yu.A., Eremin, M.O., Bakeev, R.A., Peryshkin, A.Yu., Zimina, V.A., Chirkov, A., Kazakbaeva, A.A., and Akhmetov, A.Zh., Autosoliton View of the Seismic Process. Part 2. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia, Phys. Mesomech., 2021, vol. 24, no. 4, pp. 375–390. https://doi.org/10.1134/S1029959921040044

    Article  Google Scholar 

  48. Kerner, B.S. and Osipov, V.V., Self-Organization in Active Distributed Media: Scenarios for the Spontaneous Formation and Evolution of Dissipative Structures, Sov. Phys. Usp., 1990, vol. 33, no. 9, pp. 679–719.

    Article  ADS  Google Scholar 

  49. Cross, M.C. and Hohenberg, P.C., Pattern Formation Outside of Equilibrium, Rev. Mod. Phys., 1993, vol. 65, pp. 854–1112.

    Article  ADS  Google Scholar 

  50. Aranson, I.S., The World of the Complex Ginzburg–Landau Equation, Rev. Mod. Phys., 2002, vol. 74, pp. 99–143.

    Article  ADS  Google Scholar 

Download references

Funding

The work was performed at the financial support of the Russian Science Foundation (Project No. 19-17-00122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Makarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, P.V., Khon, Y.A. Autosoliton View of the Seismic Process. Part 1. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia. Phys Mesomech 24, 363–374 (2021). https://doi.org/10.1134/S1029959921040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921040032

Keywords:

Navigation