Skip to main content
Log in

The Physical Mesomechanics of the Earthquake Source

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

This article has been updated

Abstract

This paper is a brief review of the main recent results obtained by studying fault slip processes. The published hypotheses and data are analyzed within the approach proposed by Panin, according to which the subsurface is considered as a multilevel hierarchically organized system where all processes evolve consistently at the nano-, micro-, meso- and macroscale levels. The review focuses on the hierarchy of structures that, according to modern concepts, form the seismogenic fault slip zone. The relationship of the structures with the mechanical characteristics of localized slip surfaces and microcontacts determining the slip dynamics of fault zones at the macrolevel is discussed. It is shown that the evolution of the contact properties of filler particles in the slip zone determines not only the occurrence of instability, but also the ability of a fault to recover strength with time. The simplest scheme of the hierarchy of macroscopic asperities is described to support the important principle that the initiation, evolution and arrest of a seismogenic fault depend on the size and relative position of regions with different dynamics of frictional characteristics during slip. The performed analysis of the results of field observations shows that because of the insufficient accuracy of observations and the ambiguous interpretation of the inverse problem solution, it is impossible to correctly identify fault segments with the velocity weakening property. The size and location of these zones can be more accurately determined from the analysis of records of high-frequency oscillations in the vicinity of an earthquake rupture. The basic principles of physical mesomechanics provide a good basis for the interpretation of such results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Change history

  • 31 August 2021

    Corrected issue title

REFERENCES

  1. Cailleus, A. and Tricart, J., Le problème de la Classification des Faits Géomorphologiques, Annales de Géographie, 1956, vol. 65, no. 349, pp. 162–186.

    Article  Google Scholar 

  2. Piotrovskii, V.V., Application of Morphometry to Studies of the Earth’s Relief and Structure, in The Earth in the Universe, Fedynskii, Ed., Jerusalem: Israel Program for Scientific Translations, 1968, pp. 228–243.

  3. Sadovsky, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., Deformation of the Geophysical Medium and Seismic Process, Moscow: Nauka, 1987.

  4. Rodionov, V.N., Sizov, I.A., and Tsvetkov, V.M., Fundamentals of Geomechanics, Moscow: Nedra, 1986.

  5. Kocharyan, G.G. and Spivak, A.A., Dynamics of Rock Deformation, Moscow: Akademkniga, 2003.

  6. Panin, V.E., Foundations of Physical Mesomechanics, Phys. Mesomech., 1998, vol. 1, no. 1, pp. 5–20.

    Google Scholar 

  7. Panin, V.E., Egorushkin, V.E., and Panin, A.V., Physical Mesomechanics of a Deformed Solid as a Multilevel System. I. Physical Fundamentals of the Multilevel Approach, Phys. Mesomech., 2006, vol. 9, no. 3–4, pp. 9–20.

    Google Scholar 

  8. Panin, V.E. and Egorushkin, V.E., Deformable Solid as a Nonlinear Hierarchically Organized System, Phys. Mesomech., 2011, vol. 14, no. 5–6, pp. 207–223.

    Article  Google Scholar 

  9. Panin, V.E., Fomin, V.M., and Titov, V.M., Physical Principles of Mesomechanics of Surface Layers and Internal Interfaces in a Solid under Deformation, Phys. Mesomech., 2003, vol. 6, no. 3, pp. 5–13.

    Google Scholar 

  10. Scholz, C.H., Paradigms or Small Change in Earthquake Mechanics, in Fault Mechanics and Transport Properties of Rocks, Evans, B. and Wang, T., Eds., Academic Press Limited, 1992, pp. 505–517.

  11. Chinnery, M.A., The Strength of the Earth’s Crust under Horizontal Shear Stress, J. Geophys. Res., 1964, vol. 69, pp. 2085–2089.

    Article  ADS  Google Scholar 

  12. Brace, W.F. and Byerlee, J.D., Stick-Slip as a Mechanism for Earthquakes, Science, 1966, vol. 153, pp. 990–992.

    Article  ADS  Google Scholar 

  13. Kanamori, H. and Stewart, G.S., Seismological Aspects of the Guatemala Earthquake of February 4, 1976, J. Geophys. Res., 1978, vol. 83, pp. 3427–3434.

    Article  ADS  Google Scholar 

  14. Ruzhich, V.V. and Kocharyan, G.G., On the Structure and Formation of Earthquake Sources in the Faults Located in the Subsurface and Deep Levels of the Crust. I. Subsurface Level, Geodin. Tektonofiz., 2017, vol. 8, no. 4, pp. 1021–1034. https://doi.org/10.5800/GT-2017-8-4-0330

    Article  Google Scholar 

  15. Rebetsky, Yu.L., Regularities of Crustal Faulting and Tectonophysical Indicators of Fault Metastability, Geodin. Tektonofiz., 2018, vol. 9, no. 3, pp. 629–652. https://doi.org/10.5800/GT-2018-9-3-0365

    Article  Google Scholar 

  16. Byerlee, J.D., Friction of Rocks, Pure. Appl. Geophys., 1978, vol. 116, pp. 615–626.

    Article  ADS  Google Scholar 

  17. Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge: Cambridge University Press, 2002.

  18. Marone, C., Laboratory Derived Friction Laws and Their Application to Seismic Faulting, Ann. Rev. Earth Planet. Sci., 1998, vol. 26, pp. 643–696.

    Article  ADS  Google Scholar 

  19. Mandelbrot, B., The Fractal Geometry of Nature, San Francisco: Freeman, 1982.

  20. Power, W.L., Tullis, T.E., Brown, S.R., Boitnott, G.N., and Scholz, C.H., Roughness of Natural Fault Surfaces, Geophys. Res. Lett., 1987, vol. 14, pp. 29–32.

    Article  ADS  Google Scholar 

  21. Kocharyan, G.G. and Kulyukin, A.M., Study of Caving Features for Underground Workings in a Rock Mass of Block Structure with Dynamic Action. Part II. Mechanical Properties of Interblock Gaps, J. Mining Sci., 1994, vol. 30, no. 5, pp. 437–446. https://doi.org/10.1007/BF02047334

    Article  Google Scholar 

  22. Bouchaud, E., Scaling Properties of Cracks, J. Phys. Condens. Matter., 1997, vol. 9, pp. 4319–4344.

    Article  ADS  Google Scholar 

  23. Sagy, A. and Brodsky, E.E., Geometric and Rheological Asperities in an Exposed Fault Zone, J. Geophys. Res. B, 2009, vol. 114, p. 02301. https://doi.org/10.1029/2008JB005701

    Article  ADS  Google Scholar 

  24. Amitrano, D. and Schmittbuhl, J., Fracture Roughness and Gouge Distribution of a Granite Shear Band, J. Geophys. Res. B, 2002, vol. 107, no. 12. p. 2375. https://doi.org/10.1029/2002JB001761

    Article  ADS  Google Scholar 

  25. Brodsky, E.E., Kirkpatrick, J.D., and Candela, T., Constraints from Fault Roughness on the Scale-Dependent Strength of Rocks, Geology, 2016, vol. 44, no. 1, pp. 19–22. https://doi.org/10.1130/G37206.1

    Article  ADS  Google Scholar 

  26. Chen, X., Madden, A.S., Bickmore, B.R., and Reches, Z., Dynamic Weakening by Nanoscale Smoothing during High-Velocity Fault Slip, Geology, 2013, vol. 41, no. 7, pp. 739–742. https://doi.org/10.1130/G34169.1

    Article  ADS  Google Scholar 

  27. Kocharyan, G.G., Geomechanics of Faults, Moscow: GEOS, 2016.

  28. Candela, T., Renard, F., Bouchon, M., Schmittbuhl, J., and Brodsky, E.E., Stress Drop during Earthquakes: Effect of Fault Roughness Scaling, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 5, pp. 2369–2387. https://doi.org/10.1785/0120100298

    Article  Google Scholar 

  29. Selvadurai, P.A. and Glaser, S.D., Asperity Generation and Its Relationship to Seismicity on a Planar Fault: A Laboratory Simulation, Geophys. J. Int., 2017, vol. 208, pp. 1009–1025.

    Article  ADS  Google Scholar 

  30. Sagy, A., Brodsky, E.E., and Axen, G.J., Evolution of Fault-Surface Roughness with Slip, Geology, 2007, vol. 35, pp. 283–286. https://doi.org/10.1130/G23235A.1

    Article  ADS  Google Scholar 

  31. Chen, X., Carpenter, B.M., and Reches, Z., Asperity Failure Control of Stick–Slip along Brittle Faults, Pure Appl. Geophys., 2020, vol. 177, pp. 3225–3242. https://doi.org/10.1007/s00024-020-02434-y

    Article  ADS  Google Scholar 

  32. Tabor, D., Interaction between Surfaces: Adhesion and Friction, in Surface Physics of Materials, Blakely, J.M., Ed., Ch. 10, New York: Academic Press, 1975.

  33. Ruzhich, V.V. and Sherman, S.I., Estimation of the Relation between the Length and Amplitude of Fault Displacements, in Crustal Dynamics in Eastern Siberia, Novosibirsk: Nauka, 1978, pp. 52–57.

  34. Wang, K. and Bilek, S.L., Fault Creep Caused by Subduction of Rough Seafloor Relief, Tectonophysics, 2014, vol. 610, pp. 1–24.

    Article  ADS  Google Scholar 

  35. Rice, J.R., Heating and Weakening of Faults during Earthquake Slip, J. Geophys. Res. B, 2006, vol. 111, no. 5, p. 05311. https://doi.org/10.1029/2005JB004006

    Article  ADS  Google Scholar 

  36. Chester, F.M. and Chester, J.S., Ultracataclasite Structure and Friction Processes of the Punchbowl Fault, San Andreas System, California, Tectonophysics, 1998, vol. 295, pp. 199–221.

    Article  ADS  Google Scholar 

  37. Chester, J.S., Chester, F.M., and Kronenberg, A.K., Fracture Surface Energy of the Punchbowl Fault, San Andreas System, Nature, 2005, vol. 437, pp. 133–136.

    Article  ADS  Google Scholar 

  38. Sibson, R.H., Thickness of the Seismic Slip Zone, Bull. Seismol. Soc. Am., 2003, vol. 93, no. 3, pp. 1169–1178.

    Article  Google Scholar 

  39. Reches, Z. and Lockner, D.A., Fault Weakening and Earthquake Instability by Powder Lubrication, Nature, 2010, vol. 467, pp. 452–455. https://doi.org/10.1038/nature09348.39

    Article  ADS  Google Scholar 

  40. Boneh, Y. and Reches, Z., Geotribology—Friction, Wear, and Lubrication of Faults, Tectonophysics, 2018, vol. 733, pp. 171–181. https://doi.org/10.1016/j.tecto.2017.11.022

    Article  ADS  Google Scholar 

  41. Ruff, L. and Kanamori, H., Seismic Coupling and Uncoupling at Subduction Zones, Tectonophysics, 1983, vol. 99, no. 2–4, pp. 99–117. https://doi.org/10.1016/0040-1951(83)90097-5

    Article  ADS  Google Scholar 

  42. Tichelaar, B.W. and Ruff, L.J., Depth of Seismic Coupling along Subduction Zones, J. Geophys. Res. B, 1993, vol. 98, no. 2, pp. 2017–2037. https://doi.org/10.1029/92JB02045

    Article  ADS  Google Scholar 

  43. Kocharyan, G.G. and Novikov, V.A., Experimental Study of Different Modes of Block Sliding along Interface. Part 1. Laboratory Experiments, Phys. Mesomech., 2016, vol. 9, no. 2, pp. 189–199. https://doi.org/10.1134/S1029959916020120

    Article  Google Scholar 

  44. Budkov, A.M. and Kocharyan, G.G., Experimental Study of Different Modes of Block Sliding along Interface. Part 3. Numerical Modeling, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 203–208. https://doi.org/10.1134/S1029959917020102

    Article  Google Scholar 

  45. Kocharyan, G.G., Novikov, V.A., Ostapchuk, A.A., and Pavlov, D.V., A Study of Different Fault Slip Modes Governed by the Gouge Material Composition in Laboratory Experiments, Geophys. J. Int., 2017, vol. 208, pp. 521–528. https://doi.org/10.1093/gji/ggw409

    Article  ADS  Google Scholar 

  46. Dieterich, J.H., Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations, J. Geophys. Res., 1979, vol. 84, pp. 2161–2168.

    Article  ADS  Google Scholar 

  47. Ruina, A.L., Slip Instability and State Variable Friction Laws, J. Geophys. Res., 1983, vol. 88, pp. 10359–10370.

    Article  ADS  Google Scholar 

  48. Rice, J.R., Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault, in Fault Mechanics and Transport Properties of Rocks, Evans, B. and Wong, T.-F., Eds., 1992, pp. 475–504.

  49. Reches, Z., Chen, X., and Carpenter, B., Asperity Failure Control of Stick-Slip along Brittle Faults, Pure Appl. Geophys., 2020. https://doi.org/10.1007/s00024-020-02434-y

  50. Ikari, M.J., Marone, C., Saffer, D.M., and Kopf, A.J., Slip Weakening as a Mechanism for Slow Earthquakes, Nature Geosci., 2013, vol. 6, pp. 468–472. https://doi.org/10.1038/NGEO18198

    Article  ADS  Google Scholar 

  51. Carpenter, B.M., Ikari, M.J., and Marone, C., Laboratory Observations of Time-Dependent Frictional Strengthening and Stress Relaxation in Natural and Synthetic Fault Gouges, J. Geophys. Res. Solid Earth., 2016, vol. 121, pp. 1183–1201. https://doi.org/10.1002/2015JB012136

    Article  ADS  Google Scholar 

  52. Scholz, C.H. and Campos, J., The Seismic Coupling of Subduction Zones Revisited, J. Geophys. Res. B, 2012, vol. 117, p. 05310. https://doi.org/10.1029/2011JB009003

    Article  ADS  Google Scholar 

  53. Ruzhich, V.V., Medvedev, V.Ya., and Ivanova, L.A., Healing of Seismogenic Ruptures and Earthquake Recurrence, in Seismicity of the Baikal Rift. Prognostic Aspects, Novosibirsk: Nauka, 1990, pp. 44–50.

  54. Tenthorey, E., Cox, S.F., and Todd, H.F., Evolution of Strength Recovery and Permeability during Fluid-Rock Reaction in Experimental Fault Zones, Earth Planet. Sci. Lett., 2003, vol. 206, pp. 161–172.

    Article  ADS  Google Scholar 

  55. Turcotte, D. and Schubert, J., Geodynamics: Application of Continuum Physics to Geological Problems, New York: John Wiley and Sons, 1982.

  56. Beeler, N. and Hickman, S., Stress-Induced, Time-Dependent Fracture Closure at Hydrothermal Conditions, J. Geophys. Res., 2004, vol. 109. https://doi.org/10.1029/2002JB001782

  57. Niemeijer, A., Marone, C., and Elsworth, D., Healing of Simulated Fault Gouges Aided by Pressure Solution: Results from Rock Analogue Experiments, J. Geophys. Res. B, 2008, vol. 113, p. 04204. https://doi.org/10.1029/2007JB005376

    Article  ADS  Google Scholar 

  58. Tenthorey, E. and Cox, S.F., Cohesive Strengthening of Fault Zones during the Interseismic Period: An Experimental Study, J. Geophys. Res. B, 2006, vol. 111, p. 09202. https://doi.org/10.1029/2005JB004122

    Article  ADS  Google Scholar 

  59. Ikari, M.J., Carpenter, B.M., and Marone, C., A Microphysical Interpretation of Rate- and State Dependent Friction for Fault Gouge, Geochem. Geophys. Geosyst., 2016, vol. 17, pp. 1660–1677. https://doi.org/10.1002/2016GC006286

    Article  ADS  Google Scholar 

  60. Chester, F.M. and Higgs, N.G., Multimechanism Friction Constitutive Model for Ultrafine Quartz Gouge at Hypocentral Locations, J. Geophys. Res., 1992, vol. 97, pp. 1859–1870.

    Article  ADS  Google Scholar 

  61. Johnson, K.L., Contact Mechanics, Cambridge University Press, 1985.

  62. Popov, V.L., Contact Mechanics and Friction. Physical Principles and Applications, Berlin: Springer–Verlag, 2010.

  63. Batukhtin, I.V., Budkov, A.M., and Kocharyan, G.G., Features of Initiation and Rupture with Heterogeneous Fault Surfaces, in Trigger Effects in Geosystem, Proc. of the V Int. Conf., 2019, pp. 137–149.

  64. Kocharyan, G.G. and Pavlov, D.V., Damage and Healing of Fault Zones in Rock, Fiz. Mezomekh., 2007, vol. 10, no. 1, pp. 5–18.

    Google Scholar 

  65. Uchida, N. and Burgmann, R., Repeating Earthquakes, Annu. Rev. Earth Planet. Sci., 2019, vol. 47, pp. 305–332.

    Article  ADS  Google Scholar 

  66. Metois, M., Vigny, C., and Socquet, A., Interseismic Coupling, Megathrust Earthquakes and Seismic Swarms along the Chilean Subduction Zone (38º–18ºS), Pure Appl. Geophys., 2017, vol. 173, no. 5, pp. 1431–1449. https://doi.org/10.1007/s00024-016-1280-5

    Article  ADS  Google Scholar 

  67. Godano, M., Bernard, P., and Dublanchet, P., Bayesian Inversion of Seismic Spectral Ratio for Source Scaling: Application to a Persistent Multiplet in the Western Corinth Rift, J. Geophys. Res. Solid Earth, 2015, vol. 120, pp. 7683–7712. https://doi.org/10.1002/2015JB012217

    Article  ADS  Google Scholar 

  68. Matsuzawa, T., Igarashi, T., and Hasegawa, A. Characteristic Small-Earthquake Sequence off Sanriku, Northeastern Honshu, Japan, Geohpys. Res. Lett., 2002, vol. 29, no. 11, p. 1543. https://doi.org/10.1029/2001GL014632

    Article  ADS  Google Scholar 

  69. Okada, T., Matsuzawa, T., and Hasegawa, A., Comparison of Source Areas of M4.8 ± 0.1 Repeating Earthquakes off Kamaishi, NE Japan—Are Asperities Persistent Features?, Earth Planet. Sci. Lett., 2003, vol. 213, pp. 361–374.

    Article  ADS  Google Scholar 

  70. Bie, L., Hicks, S., Garth, T., Gonzalez, P., and Rietbrock, A., Two Go Together’: Near-Simultaneous Moment Release of Two Asperities during the 2016 Mw6.6 Muji, China Earthquake, Earth Planet. Sci. Lett., 2018, vol. 491, pp. 34–42. https://doi.org/10.1016/j.epsl.2018.03.033

    Article  ADS  Google Scholar 

  71. Yamanaka, Y. and Kikuchi, M., Asperity Map along the Subduction Zone in Northeastern Japan Inferred from Regional Seismic Data, J. Geophys. Res. B, 2004, vol. 109, p. 07307. https://doi.org/10.1029/2003JB002683

    Article  ADS  Google Scholar 

  72. Freymueller, J.T., Cohen, S.C., and Fletcher, H.J., Spatial Variations in Present-Day Deformation, Kenai Peninsula, Alaska, and Their Implications, J. Geophys. Res., 2000, vol. 105, pp. 8079–8101.

    Article  ADS  Google Scholar 

  73. Zhang, X.F., Wanpeng, H., Li, D., Wang, L., Shuai, Y., Wang, L., and Yongzhe, The 2018 Mw7.5 Papua New Guinea Earthquake: A Dissipative and Cascading Rupture Process, Geophys. Res. Lett., 2020, vol. 47. https://doi.org/10.1029/2020GL089271

Download references

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research within scientific project No. 20-55-53031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Kocharyan.

Additional information

In memory of Academician Victor Panin, the founder of physical mesomechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G., Kishkina, S.B. The Physical Mesomechanics of the Earthquake Source. Phys Mesomech 24, 343–356 (2021). https://doi.org/10.1134/S1029959921040019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921040019

Keywords:

Navigation