Skip to main content
Log in

Dislocation and Grain Size Roles in Physical Mesomechanics

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

This article has been updated

Abstract

An update of research interests is given here on: (i) a historical description of the influence of polycrystal grain size on metal strength properties; (ii) a reciprocal square root of grain size dependence for the strength of steel materials; (iii) a grain-size-dependent transition for steel materials from plastic yielding to brittleness; (iv) thermally-activated dislocation dynamics for temperature and strain rate dependence in α-titanium and extending to shock loading of armco iron; and, (v) the combined influences of grain size and strain rate dependencies for copper, nickel, aluminum, and lead materials spanning grain size strengthening and weakening behaviors measured over meso- to nanograin sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Change history

  • 31 August 2021

    Corrected issue title

REFERENCES

  1. Panin, V.E., The Foundations of Physical Mesomechanics of Materials: General Review, in Book of Abstracts of V International Conference: Computer Aided Design of Advanced Materials and Technologies (CADAMT’97), 4–6 August, 1997, Baikal Lake, Russia, Tomsk: ISPMS SB RAS, 1997, pp. 15–17.

  2. Panin, V.E., Plastic Deformation and Fracture of Solids at the Mesoscale Level, Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 944–948.

    Article  Google Scholar 

  3. International Conference: Shock Waves in Condensed Matter, Saint-Petersburg, 12–17 July, 1998, Birukov, A.L., Dolgoborodov, A.Yu., Klimenko, I.Yu., Eds., Moscow: Inst. Chem. Phys., 1998, pp. 46–71.

  4. Panin, V.E. and Armstrong, R.W., Hall–Petch Analysis for Temperature and Strain Rate Dependent Deformation of Polycrystalline Lead, Phys. Mesomech., 2016, vol. 19, no. 1, pp. 35–40.

    Article  Google Scholar 

  5. Armstrong, R.W., Plasticity: Grain Size Effects III, in Reference Module in Materials Science and Materials Engineering, Hashmi, S., Ed., Oxford, UK: Elsevier, 2016, pp. 1–23.

  6. Grignon, P.C., On the Metamorphoses of Iron (Memoires de physique sur l’art de fabriquer le fer, P. Boucher, C.S. Smith, Transl.), in Sources for the History of the Science of Steel 1532–1786, Smith, C.S., Ed., Cambridge, MA: The Society for the History of Technology and the MIT Press, 1968, pp. 125–164.

  7. Smith, C.S., Further Notes on the Shape of Metal Grains: Space-Filling Polyhedral with Unlimited Sharing of Corners and Faces, Acta Metall., 1953, vol. 1, pp. 295–300.

    Article  Google Scholar 

  8. Ewing, J.A. and Rosenhain, W., Observations of Slip in Metals, Philos. Trans. R. Soc. Lond. A, 1900, vol. 193, pp. 353–375.

    Article  ADS  Google Scholar 

  9. Polanyi, M., Deformation, Rupture and Hardening of Crystals, Trans. Faraday Soc., 1928, vol. 24, pp. 72–83.

    Article  Google Scholar 

  10. Taylor, G.I., Resistance to Shear in Metal Crystals, Trans. Faraday Soc., 1928, vol. 24, pp. 121–126.

    Article  Google Scholar 

  11. Zener, C., A Theoretical Criterion for the Initiation of Slip Bands, Phys. Rev., 1946, vol. 69, pp. 128–129.

    Article  ADS  Google Scholar 

  12. Hall, E.O., The Deformation and Ageing of Mild Steel: Discussion of Results, Proc. Phys. Soc. Lond. B, 1951, vol. 64, pp. 747–753.

    Article  ADS  Google Scholar 

  13. Petch, N.J., The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    Google Scholar 

  14. Armstrong, R.W., Material Grain Size and Crack Size Influences on Cleavage Fracture, in Theme Issue: Fracturing Across the Multi-Scales of Diverse Materials, Armstrong, R.W., Antolovich, S.D., Griffiths, J.R., and Knott, J.F., Eds., Philos. Trans. R. Soc. A, 2015, vol. 373, p. 20140124.

  15. Panin, V.E., Derjugin, Ye.Ye., and Wasman, G.I., Shear Bands and Fracture of Imperfect Fe + 3% Si Polycrystals, Int. J. Fracture, 2001, vol. 107, pp. 1–10.

    Article  Google Scholar 

  16. Armstrong, R.W., Size Effects on Material Yield Strength/Deformation/Fracturing Properties, J. Mater. Sci., 2019, vol. 34, no. 13, pp. 2161–2176.

    Google Scholar 

  17. Armstrong, R.W. and Smith, T.R., Dislocation Pile-up Predictions for the Strength Properties of Ultrafine Grain Size FCC Metals, in Processing and Properties of Nanocrystalline Materials, Suryanarayana, C., Singh, J., and Froes, F.H., Eds., Warrendale, PA: TMS-AIME, 1996, pp. 345–354.

  18. Armstrong, R.W., Hall–Petch k Dependencies in Nanopolycrystals, Emerg. Mater. Res., 2014, vol. 3, no. 6, pp. 246–251.

  19. Armstrong, R.W., Codd, I., Douthwaite, R.M., and Petch, N.J., The Plastic Deformation of Polycrystalline Aggregates, Philos. Mag., 1962, vol. 7, pp. 45–58.

    Article  ADS  Google Scholar 

  20. Embury, J.D. and Fisher, R.M., The Structure and Properties of Drawn Pearlitic Wire, Acta Metall., 1966, vol. 14, pp. 147–152.

    Article  Google Scholar 

  21. Jang, J.S.C. and Koch, C.C., The Hall–Petch Relationship in Nanocrystalline Iron Produced by Ball Milling, Scripta Metall., 1990, vol. 24, pp. 1599–1604.

    Article  Google Scholar 

  22. Zhang, X., Godfrey, A., Huang, X., Hansen, N., and Liu, Q., Microstructure and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wire, Acta Mater., 2011, vol. 59, pp. 3422–3430.

    Article  ADS  Google Scholar 

  23. Li, Y., Raabe, D., Herbig, M., Choi, P.-P., Goto, S., Kostka, A., Yarita, H., Borchers, C., and Kirchheim, R., Segregation Stabilizes Nanocrystalline Bulk Steel with Near Theoretical Strength, Phys. Rev. Lett., 2014, vol. 13, p. 106104.

    Article  ADS  Google Scholar 

  24. Armstrong, R.W., Crystal Engineering for Mechanical Strength at Nano-Scale Dimensions, Crystals, 2017, vol. 7, p. 315.

    Article  Google Scholar 

  25. Panin, V.E., Moiseenko, D.D., and Elsukova, T.F., Multiscale Model of Deformed Polycrystals. Hall–Petch Problem, Phys. Mesomech., 2014, vol. 17, no. 1, pp. 1–14. https://doi.org/10.1134/S1029959914010019

    Article  Google Scholar 

  26. Panin, V.E., Egorushkin, V.E., Moiseenko, D.D., Maksimov, P.V., Kulkov, S.N., and Panin, S.V., Functional Role of Polycrystal Grain Boundaries and Interfaces in Micromechanics of Metal Ceramic Composites under Loading, Comp. Mater. Sci., 2016, vol. 116, pp. 74–81.

    Article  Google Scholar 

  27. Panin, V.E., Moiseenko, D.D., Maksimov, P.V., and Panin, S.V. Effects of Plastic Distortion in the Lattice Curvature Zone of a Crack Tip, Phys. Mesomech., 2017, vol. 20, no. 3, pp. 280–290. https://doi.org/10.1134/S1029959917030043

    Article  Google Scholar 

  28. Cottrell, A.H., Theory of Brittle Fracture in Steel and Similar Materials, Trans. TMS-AIME, 1958, vol. 212, pp. 192–203.

    Google Scholar 

  29. Petch, N.J., The Ductile-Brittle Transition in the Fracture of α-Iron, Philos. Mag., 1958, vol. 3, pp. 1089–1097.

    Article  ADS  Google Scholar 

  30. Armstrong, R.W., Stress–Grain Size Analysis of the Ductile-Brittle Transition for Steel and Similar Metals. Radiation Metallurgy Section, in Solid State Division Progress Report, Oak Ridge, TN: Oak Ridge National Laboratory, 1966, ORNL-4020.

  31. Panin, V.E., Derevyagina, L.S., Lemeshev, N.M., Korznikov, A.V., Panin, A.V., and Kazachenok, M.S., On the Nature of Low-Temperature Brittleness of BCC Steels, Phys. Mesomech., 2014, vol. 17, no. 2, pp. 89–96. https://doi.org/10.1134/S1029959914020015

    Article  Google Scholar 

  32. Al Mundheri, M., Soulat, P., and Pineau, A., Irradiation Embrittlement of a Low Alloy Steel Interpreted in Terms of a Local Approach of Cleavage Fracture, Fatig. Fract. Eng. Mater. Struct., 1989, vol. 12, pp. 19–30.

    Article  Google Scholar 

  33. Panin, V.E., Derevyagina, L.S., Panin, S.V., Shugurov, A.R., and Gordienko, A.I., The Role of Nanoscale Strain-Induced Defects in the Sharp Increase of Low-Temperature Toughness in Low-Carbon and Low-Alloy Steels, Mater. Sci. Eng. A, 2019, vol. 768, p. 138491.

    Article  Google Scholar 

  34. Yokobori, A.T.Jr., Holistic Approach on the Research of Yielding, Creep, and Fatigue Crack Growth Rate of Metals Based on Simplified Model of Dislocation Group Dynamics, Metals, 2020, vol. 10, p. 1048.

    Article  Google Scholar 

  35. Zerilli, F.J. and Armstrong, R.W., Constitutive Relations for Titanium and Ti-6Al-4V, in Shock Compression of Condensed Matter-1995, Schmidt, S.C. and Tao, W.C., Eds., Woodbury, CT: Am. Inst. Phys., 1996, CP370, part 1, pp. 315–318.

  36. Armstrong, R.W. and Balasubramanian, N., Physically-Based and Power-Law Constitutive Relations for Higher Temperature Metal Processing and Creep-Type Deformations, JOM, 2017, vol. 69, pp. 822–829.

    Article  ADS  Google Scholar 

  37. Mocko, W., Kruszka, L., and Brodecki, A., Strain Localization during Tensile Hopkinson Bar Testing of Commercially Pure Titanium and Ti-6Al-4V Titanium Alloy, Euro. Phys. J., 2015, vol. 94, p. 01011.

    Google Scholar 

  38. Zerilli, F.J. and Armstrong, R.W., Dislocation Mechanics Based Constitutive Equation Incorporating Dynamic Recovery and Applied to Thermomechanical Shear Instability, in Shock Compression of Condensed Matter-1997, Schmidt, S.C., Dandekar, D., Forbes, J.W., Eds., Woodbury, CT: Am. Inst. Phys., 1997, CP429, pp. 215–218.

  39. Panin, V.E., Panin, A.V., Perevalova, O.B., and Shugurov, A.R., Mesoscopic Structural States at the Nanoscale in Surface Layers of Titanium and Its Alloy Ti–6Al–4V in Ultrasonic and Electron Beam Treatment, Phys. Mesomech., 2019, vol. 22, no. 5, pp. 345–354. https://doi.org/10.1134/S1029959919050011

    Article  Google Scholar 

  40. Hémery, S., Villechaise, P., and Banerjee, D., Microplasticity at Room Temperature in α/β Titanium Alloys, Metall. Mater. Trans. A, 2020, vol. 51, pp. 4931–4969.

    Article  Google Scholar 

  41. Arnold, W., Dynamisches Werkstoff-verhalten von Armco-Eisen bei Stosswellenbelastung, Fortschritt-Berichte, Düsseldorf: VDI-Verlag GmbH, 1992, Reihe 5, no. 247.

  42. Swegle, J.W. and Grady, D.E., Shock Viscosity and the Prediction of Shock Wave Rise Times, J. App. Phys., 1985, vol. 58, pp. 692–701.

    Article  ADS  Google Scholar 

  43. Armstrong, R.W., Arnold, W., and Zerilli, F.J., Dislocation Mechanics of Shock-Induced Plasticity, Metall. Mter. Trans. A, 2007, vol. 38, pp. 2605–2610.

    Article  Google Scholar 

  44. Armstrong, R.W., Arnold, W., and Zerilli, F.J., Dislocation Mechanics of Copper and Iron in High Rate Deformation Tests, J. Appl. Phys., 2009, vol. 105, p. 023511.

    Article  Google Scholar 

  45. Armstrong, R.W., The Yield and Flow Stress Dependence on Polycrystal Grain Size, in Yield, Flow and Fracture of Polycrystals, Baker, T.N., Ed., London: Applied Science Publishers, 1983, pp. 1–31.

  46. Armstrong, R.W., Hall–Petch Description of Nanopolycrystalline Cu, Ni, and Al Strength Levels and Strain Rate Sensitivities, Philos. Mag., 2016, vol. 96, no. 29, pp. 3097–3108.

    Article  ADS  Google Scholar 

  47. Armstrong, R.W. and Li, Q.-Z., Dislocation Mechanics of High-Rate Deformations, Metall. Mater. Trans. A, 2015, vol. 46, pp. 4438–4453.

    Article  Google Scholar 

  48. Zerilli, F.J. and Armstrong, R.W., The Effect of Dislocation Drag on the Stress-Strain Behavior of FCC Metals, Acta Metall. Mater., 1992, vol. 40, no. 8, pp. 1803–1808.

    Article  Google Scholar 

  49. Armstrong, R.W. and Rodriguez, P., Flow Stress/ Strain Rate/Grain Size Coupling for FCC Nanopolycrystals, Philos. Mag., 2006, vol. 86, pp. 5787–5796.

    Article  ADS  Google Scholar 

  50. Li, H., Liang, Y., Zhao, L., Hu, J., Han, S., and Lian, J., Mapping the Strain Rate and Grain Size Dependence of Deformation Behaviors in Nanocrystalline Face-Centered-Cubic Ni and Ni-Based Alloys, J. Alloys Compds, 2017, vol. 709, pp. 566–574.

    Article  Google Scholar 

  51. Panin, V.E. and Egorushkin, V.E., Nanostructural States in Solids, Phys. Met. Metallog., 2010, vol. 110, no. 5, pp. 464–473.

    Article  Google Scholar 

  52. Egorushkin, V.E. and Panin, V.E., Translation-Rotation Plastic Flow in Polycrystals under Creep, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 401–410. https://doi.org/10.1134/S1029959918050041

    Article  Google Scholar 

  53. Panin, V.E., Kuznetsov, P.V., and Rakhmatulina, T.V., Lattice Curvature and Mesoscopic Strain-Induced Defects as the Basis of Plastic Deformation in Ultrafine-Grained Metal, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 411–418. https://doi.org/10.1134/S1029959918050053

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Armstrong.

Additional information

In memoriam of Professor Victor E. Panin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, R.W. Dislocation and Grain Size Roles in Physical Mesomechanics. Phys Mesomech 24, 418–425 (2021). https://doi.org/10.1134/S1029959921040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921040068

Keywords:

Navigation