Skip to main content
Log in

Comparison of the Scintillation Properties of Long LYSO:Ce Crystals from Different Manufacturers

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) crystals are known to have considerable variation in scintillation light yield. Thus, the use of long LYSO:Ce crystals in energy measurements requires improved uniformity to realize high resolution. As it is known that differences in crystal characteristics can originate from differences in manufacturing techniques using the Czochralski method, it is useful to measure and compare the non-uniformity of LYSO:Ce crystals from different manufacturers. Comprehensive comparison of such crystals can be achieved using two methods, namely, gamma spectroscopy and optical spectroscopy. In this study, we examined two long crystals obtained from Saint-Gobain (France) and JT Technology Co. Ltd. (China). The Saint-Gobain crystal was found to have a more uniform distribution of scintillation properties and to contain fewer optical traps and crystal structure defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. M. Globus and B. Grinyov, Inorganic Scintillation Crystals: New and Traditional Materials (Akta, Kharkov, Ukraine, 2001).

    Google Scholar 

  2. M. Kapusta et al., “Comparison of the scintillation properties of LSO:Ce manufactured by different laboratories and of LGSO:Ce,” IEEE Trans. Nucl. Sci. 47, 1341–1345 (2000).

    Article  ADS  Google Scholar 

  3. M. Cordelli et al., “Test of a LYSO matrix with an electron beam between 100 and 500 MeV for KLOE-2,” Nucl. Instrum. Methods Phys. Res., Sect. A 617, 109–112 (2010).

    Google Scholar 

  4. R. Abramishvili et al. (COMET Collab.), “COMET Phase-I technical design report,” Prog. Theor. Exp. Phys. 2020, 033C01 (2020).

  5. C. M. Pepin et al., “Properties of LYSO and recent LSO scintillator for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51, 789–795 (2004).

    Article  ADS  Google Scholar 

  6. C. W. E. van Eijk, “Inorganic scintillators in medical imaging,” Phys. Med. Biol. 47 (8), 85–106 (2002).

    Article  Google Scholar 

  7. V. Garmash, S. Beloglovski, and S. Lubetsi, “Industrial manufacturing of cerium-doped lutetium silicate crystals on enterprise joint-stock-company ‘north crystals’,” Nucl. Instrum. Methods Phys. Res., Sect. A 486, 106–110 (2002).

    Google Scholar 

  8. C. Melcher et al., “Method for manufacturing a cerium-doped lutetium oxyorthosilicate scintillator boule having a graded decay time,” US Patent No. 6, 413, 311 B2 (2002).

  9. M. Belov et al., “Influence of defects on scintillation properties of oxyorthosilicate crystals Ce:Sc:LFS,” Bull. Lebedev Phys. Inst. 44, 232–237 (2017).

    Article  ADS  Google Scholar 

  10. H.-C. Schultz-Coulon, “The Physics of particle detectors,” Course of Lectures, Lecture and Journal Club SS 2011, Kirchhoff-Inst. Phys., 2011.

    Google Scholar 

  11. R. Zhu, G. Gratta, and H. Newman, “Crystal calorimeters for particle physics,” Nucl. Phys. B Proc. Suppl. 44, 88–108 (1995).

    Article  ADS  Google Scholar 

  12. C. W. Fabjan and F. Gianotti, “Calorimetry for particle physics,” Rev. Mod. Phys. 75, 1243–1286 (2003).

    Article  ADS  Google Scholar 

  13. COMET Collab., “Conceptual design report for experimental search for lepton flavor violating μN → eN conversion at sensitivity of 10–16 with a slow-extracted bunched proton beam (COMET),” KEK Report No. 2009-10 (2009).

  14. V. Kalinnikov et al., “Spatial and temporal evolution of scintillation light in LYSO electromagnetic calorimeter for non-paraxial electromagnetic showers,” Nonlin. Phenom. Complex 19, 345–357 (2016).

    Google Scholar 

  15. N. Abrosimov, V. Kurlov, and S. Rossolenko, “Automated control of Czochralski and shaped crystal growth processes using weighing techniques,” Prog. Cryst. Growth Charact. Mater. 46 (2), 1–57 (2003).

    Article  Google Scholar 

  16. A. Wojtowicz, P. Szupryczynski, D. Wisniewski, J. Glodo, and W. Drozdowski, “Electron traps and scintillation mechanism in LuAlO3:Ce,” J. Phys.: Condens. Matter 13, 275–291 (2001).

    Google Scholar 

  17. S. Blahuta et al., “Defects identification and effects of annealing on Lu2(1-x)Y2xSiO5 (LYSO) single crystals for scintillation application,” Materials 4, 1224–1237 (2011).

    Article  ADS  Google Scholar 

  18. B. Liu et al., “First-principles study of oxygen vacancies in Lu2SiO5,” J. Phys.: Condens. Matter, No. 43, 436215 (2007).

    Google Scholar 

  19. http://www.jtcrystaltech.com/en/Product/Scintillation_ crystal/71.html.

  20. https://www.crystals.saint-gobain.com/sites/imdf.crystals. com/files/documents/lyso-material-data-sheet_1.pdf.

  21. V. Kalinnikov and E. Velicheva, “Investigation of LYSO and GSO crystals and simulation of the calorimeter for COMET experiment,” Phys. Part. Nucl. Lett. 11, 259–268 (2014).

    Article  Google Scholar 

  22. D. Ding et al., “Effects of anisotropy on structural and optical characteristics of LYSO: CE crystal,” Phys. Status Solidi B 251, 1202–1211 (2014).

    Article  ADS  Google Scholar 

  23. D. Chiriu, N. Faedda, A. Lehmann, and P. C. Ricci, “Structural characterization of Lu1.8Y0.2SiO5 crystals,” Phys. Rev. B 76, 054112 (2007).

    Article  ADS  Google Scholar 

  24. V. Jary et al., “Influence of yttrium content on the CeLu1 and CeLu2 luminescence characteristics in (Lu1 – xYx)2SiO5:Ce single crystals,” IEEE Trans. Nucl. Sci. 59, 2079–2084 (2012).

    Article  ADS  Google Scholar 

  25. W. Trower et al., “Cerium-doped lutetium-based single crystal scintillators,” in Proceedings of the International Conference on Inorganic Scintillators and their Applications SCINT 95, Ed. by P. Dorenbos, M. Marsman, and C. W. E. van Eijk (Delft Univ. Press, The Netherlands, 1995), pp. 241–245.

  26. https://solarlaser.com/ru/products/compact-spectrometers/compact-wide-range-spectrometer-model-s100/.

  27. https://hubner-photonics.com/products/lasers/single-frequency-lasers/05-01-series/.

  28. www.agilent.com.

  29. P. Dorenbos et al., “Energy resolution, non-proportionality, and absolute light yield of scintillation crystals, in inorganic scintillators and their applications,” in Proceedings of the International Conference on Inorganic Scintillators and their Applications SCINT 95, Ed. by P. Dorenbos, M. Marsman, and C. W. E. van Eijk (Delft Univ. Press, The Netherlands, 1995), pp. 148–155.

  30. P. Antich, R. Parkey, E. Tsyganov, V. Garmash, and I. Zheleznykh, “Comparison of LSO samples produced by Czochralsky and modified Musatov methods,” Nucl. Instrum. Methods Phys. Res., Sect. A 441, 551–557 (2000).

    Google Scholar 

  31. L. Montalto et al., “Quality control and structural assessment of anisotropic scintillating crystals,” Crystals 9, 376 (2019).

    Article  Google Scholar 

  32. M. Moszyflski, T. Ludziejewski, D. Wolski, W. Klamra, and V. Avdiejchikov, “Timing properties of GSO and LSO scintillators,” in Proceedings of the International Conference on Inorganic Scintillators and their Applications SCINT 95, Ed. by P. Dorenbos, M. Marsman, and C. W. E. van Eijk (Delft Univ. Press, The Netherlands, 1995), pp. 372–376.

  33. F. X. Gentit, “Litrani: A general purpose Monte-Carlo program simulating light propagation in isotropic or anisotropic media,” CMS-NOTE-2001-044 (2001). https://crystalclear.web.cern.ch/SLitraniX/SLitrani/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Velicheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinnikov, V., Velicheva, E. & Uozumi, Y. Comparison of the Scintillation Properties of Long LYSO:Ce Crystals from Different Manufacturers. Phys. Part. Nuclei Lett. 18, 457–468 (2021). https://doi.org/10.1134/S1547477121040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121040105

Keywords:

Navigation