Skip to main content
Log in

Does a Single Electron Have Wave Properties?

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

An attempt is made to substantiate the absence of wave properties for a single electron. What is commonly called the corpuscular-wave duality or the wave properties of matter, which appear in the form of a diffraction pattern on the target of certain kind, is a result of the obligatory involvement of a large number of electrons in the diffraction process. In the context of quantum mechanics, a form of the diffraction pattern can be predicted using the rule of adding probability amplitudes, which, in the simplest case, are solutions to the Schrödinger equation for free particles. Therefore, the answer to the question posed in the title sounds something like this: a single electron has no wave properties; however, they become apparent whenever there are many electrons and a suitable target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. We will use the terminology of D.I. Blokhintsev [8], understanding microparticles as objects of the microworld.

  2. Here, \(h = 6.6262 \times {{10}^{{ - 27}}}\) Erg s is the Planck constant.

  3. A. Einstein, The Collection of Scientific Papers, vol. 3, p. 465.

  4. In other words, these are particles without any individual wave properties.

  5. These “exculpatory” statements seem convincing. However, the history of the science and technology development has not yet presented any arguments against the (opposite) point of view that the human mind has always found an opportunity to adequately reflect (understand) new and previously unknown processes and phenomena. It is not obvious that the microcosm will become an insurmountable obstacle here.

  6. Feynman here does not distinguish between diffraction and interference, since he considers the first to be the result of the “work” of the second. He also ignores single-slit diffraction. As is known, the diffraction (deflection) of light takes place even at the macroslit boundary. The impression may be created that wave phenomena do not manifest themselves with the diffraction by one slit, but arise only as a result of the combined action of two slits. In modern work [19], it is said that the results of studying the wave nature of electrons, obtained at an electron microscope, show that the consideration of the electron diffraction by one round hole gives a full proof that an interference experiment on two holes, generally speaking, is not required for demonstrating the superposition of electron waves.

  7. Here it is tacitly assumed that an interaction occurs with probability \({{q}_{{1,2}}} = 1\) at each slit, or, equivalently, both slits are “in action.” If \({{q}_{{1,2}}} \ne 1\), then (3) should be written as \({{P}_{{12}}} = {{\left| {\left\langle {\left. x \right|1} \right\rangle {{q}_{1}}\left\langle {\left. 1 \right|s} \right\rangle + \left\langle {\left. x \right|2} \right\rangle {{q}_{2}}\left\langle {\left. 2 \right|s} \right\rangle } \right|}^{2}}\) and the “cutoff”, e.g., of slit 1, means that \({{q}_{1}} = 0\).

  8. Further in (11), \({\mathbf{r}}\) is the radius vector of an electron; \(C\) is the normalization constant; \({{{\mathbf{k}}}_{i}}\) and \({{{\mathbf{k}}}_{s}}\) are the wavevectors of the initial and scattered electrons; \(\left| {{{{\mathbf{k}}}_{i}}} \right| = \sqrt {{{2mE} \mathord{\left/ {\vphantom {{2mE} {{{\hbar }^{2}}}}} \right. \kern-0em} {{{\hbar }^{2}}}}} \), where \(E,m\) are the energy and mass of an electron, and \(h = 2\pi \hbar \) is the Planck constant. In elastic scattering, \(\left| {{{{\mathbf{k}}}_{i}}} \right| = \left| {{{{\mathbf{k}}}_{s}}} \right|\).

  9. If the combination of words “cannot … simultaneous” is removed, then hope remains that wave phenomena can be associated simply with the presence of a large number of particles.

  10.  The fact that the wave properties of matter were already predicted by de Broglie is secondary in this case.

  11.  With special consideration, it turns out that these wave properties are very unusual, but this is already later.

  12.  Of course, for the sake of respect for the great merits of the founders of quantum mechanics.

  13.  Since today it is already possible to work with a single electron, the proof of the wave–particle duality would be an experiment with one electron, demonstrating the wave properties of this particular electron. It is not at all clear yet how this can be done, though.

  14.  Attempts were made to use the inelastic interaction of electrons in a material of specially prepared nanoslits to determine the place of electron penetration through the slit [34, 35].

  15.  Why is the speed of movement (emission) of a photon is constant? The answer is simple: a photon has zero inertial mass and, because of this, its speed can be changed in no way and it has to be constant! Logically, there are only three options. This constant speed is infinite, but there are no infinities in nature; infinity only exists in the brains of mathematicians. This speed is equal to zero, but then the photon cannot leave its source; i.e., it simply does not exist There is only one constant left. Why is it equal to \(3 \times {{10}^{{10}}}\) cm/s? This is how our world works (anthropic principle); that is the most accurate answer so far.

  16.  Here you can recall the statements of Einstein, e.g., from his book The Evolution of Physics [64].

  17.  He wrote [15] that “in quantum mechanics, a statistical aggregate is analyzed from a certain process of interactions of quantum particles and a macroscopic body. On the basis of a series of such individual processes, the concept of a fictitious average process is established; it is the process that is meant in the uncertainty principle. Quantum mechanics is a theory of the properties of this average fictitious representative of quantum particles and only of the properties which appear during the interaction with macroscopic bodies.”

REFERENCES

  1. D. Z. Freedman, “Coherent effects of a weak neutral current,” Phys. Rev. D 9, 1389–1392 (1974).

    Article  ADS  Google Scholar 

  2. D. Z. Freedman, D. N. Schramm, and D. L. Tubbs, “The weak neutral current and its effects in stellar collapse,” Ann. Rev. Nucl. Part. Sci. 27, 167–207 (1977).

    Article  ADS  Google Scholar 

  3. V. A. Bednyakov and D. V. Naumov, “Coherency and incoherency in neutrino-nucleus elastic and inelastic scattering,” Phys. Rev. D 98, 053004 (2018); arXiv: 1806.08768.

  4. V. A. Bednyakov and D. V. Naumov, “On coherent neutrino and antineutrino scattering off nuclei,” Phys. Part. Nucl. Lett. 16, 638–646 (2019); arXiv: 1904.03119.

  5. T. Young, A Course of Lectures on Natural Philosophy and Mechanical Arts (Johnson, London, 1807).

    Book  Google Scholar 

  6. A. Messiah, Quantum Mechanics (Dunod, France, 1962).

    MATH  Google Scholar 

  7. L. Broglie, “Waves and quanta,” Nature (London, U.K.) 112, 540 (1923).

    Article  ADS  Google Scholar 

  8. D. I. Blokhintsev, Fundamentals of Quantum Mechanics (Vyssh. Shkola, Moscow, 1963; Springer, Netherlands, 1964).

  9. C. Davisson and L. Germer, “Reflection of electrons by a crystal of nickel,” Proc. Natl. Acad. Sci. U. S. A. 14, 317–322 (1928).

    Article  ADS  Google Scholar 

  10. Y. I. Frenkel’, “Particles and waves,” Nauch. Slovo 8, 3 (1928); Y. I. Frenkel’, “Origin and development of quantum mechanics,” Priroda, No. 1, 3–27 (1930).

    Google Scholar 

  11. B. A. Fock, Lecture on Quantum Mechanics (Leningrad, 1937) [in Russian]; “What did quantum theory bring to the basic concepts of physics?,” Sots. Rekonstr. Nauka, No. 6, 3–8 (1935).

    Google Scholar 

  12. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in Physics, Vol. 3: Quantum Mechanics (Addison-Wesley, Reading, USA, 1965).

  13. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).

    Book  MATH  Google Scholar 

  14. P. C. Tartakovskii, “Wave views on the nature of matter and experience,” Usp. Fiz. Nauk 8, 338–341 (1928).

    Article  Google Scholar 

  15. K. B. Nikol’skii, “Answer to V. A. Fok,” Usp. Fiz. Nauk 17, 557–560 (1937); K. B. Nikol’skii, “Quantum optics,” in Physical Glossary (1940), Vol. 2, p. 774.

  16. R. Bach, D. Pope, S. H. Liou, H. Batelaan, and U. Nebraska, “Controlled double-slit electron diffraction,” New J. Phys. 15, 033018 (2013); arXiv: 1210.6243

    Article  ADS  Google Scholar 

  17. L. Schiff, Quantum Mechanics (McGraw-Hill, USA, 1955).

    MATH  Google Scholar 

  18. N. Bohr, in Albert Einstein: Philosopher Scientist, Ed. by A. Schlipp (Open Court, La Salle, IL, 1949).

    Google Scholar 

  19. G. Matteucci, “On the presentation of wave phenomena of electrons with the Young–Feynman experiment,” Eur. J. Phys. 3242, 733–738 (2011).

    Article  Google Scholar 

  20. C. Jönsson, “Elektroneninterferenzen an mehreren kunstlich hergestellten Feinspalten,” Z. Phys. 161, 454–474 (1961).

    Article  ADS  Google Scholar 

  21. C. Jönsson, “Electron diffraction at multiple slits,” Am. J. Phys. 42, 4–11 (1972).

    Article  ADS  Google Scholar 

  22. G. Matteucci, “Electron wavelike behavior: A historical and experimental introduction,” Am. J. Phys. 58, 1143–1147 (1990).

    Article  ADS  Google Scholar 

  23. P. Merli, G. Missiroli, and G. Pozzi, “On the statistical aspect of electron interference phenomena,” Am. J. Phys. 44, 306–307 (1976).

    Article  ADS  Google Scholar 

  24. A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, “Demonstration of single-electron buildup of an interference pattern,” Am. J. Phys 57, 117–120 (1989).

    Article  ADS  Google Scholar 

  25. A. Tonomura, “Direct observation of thitherto unobservable quantum phenomena by using electrons,” Proc. Nat. Acad. Sci. U. S. A. 102, 14952–14959 (2005).

    Article  ADS  Google Scholar 

  26. A. Tavabi, C. Boothroyd, E. Yucelen, S. Frabboni, G. C. Gazzadi, R. Dunin-Borkowski, and G. Pozzi, “The Young-Feynman controlled double-slit electron interference experiment,” Sci. Rep. 9, 10458 (2019).

    Article  ADS  Google Scholar 

  27. B. Barwick, G. Gronniger, L. Yuan, S.-H. Liou, and H. Batelaan, “A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings,” J. Appl. Phys. 100, 074322–074322 (2006).

    Article  ADS  Google Scholar 

  28. S. Frabboni, G. C. Gazzadi, and G. Pozzi, “Young’s double-slit interference experiment with electrons,” Am. J. Phys. 75, 1053–1055 (2007).

    Article  ADS  Google Scholar 

  29. S. Frabboni, G. C. Gazzadi, and G. Pozzi, “Nanofabrication and the realization of Feynman’s two-slit experiment,” Appl. Phys. Lett. 93, 073108–073108 (2008).

    Article  ADS  Google Scholar 

  30. S. Frabboni, A. Gabrielli, G. C. Gazzadi, F. Giorgi, G. Matteucci, G. Pozzi, N. Cesari, M. Villa, and A. Zoccoli, “The Young–Feynman two-slits experiment with single electrons: Build-up of the interference pattern and arrival-time distribution using a fast-readout pixel detector,” Ultramicroscopy 116, 73–6 (2012).

    Article  Google Scholar 

  31. A. Gabrielli, F. Giorgi, N. Semprini, M. Villa, A. Zoccoli, G. Matteucci, G. Pozzi, S. Frabboni, and G. C. Gazzadi, “A 4096-pixel MAPS detector used to investigate the single-electron distribution in a Young–Feynman two-slit interference experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 699, 47–50 (2013).

    Google Scholar 

  32. S. Frabboni, G. C. Gazzadi, and G. Pozzi, “Ion and electron beam nanofabrication of the which-way double-slit experiment in a transmission electron microscope,” Appl. Phys. Lett. 97, 263101–263101 (2010).

    Article  ADS  Google Scholar 

  33. S. Frabboni, G. C. Gazzadi, V. Grillo, and G. Pozzi, “Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman’s which-way set-up,” Ultramicroscopy 154, 49–56 (2015).

    Article  Google Scholar 

  34. R. Egerton, “Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy,” Ultramicroscopy 107, 575–86 (2007).

    Article  Google Scholar 

  35. R. Egerton, “Electron energy loss spectroscopy in the TEM,” Rep. Prog. Phys. 72, 16502–25 (2009).

    Article  ADS  Google Scholar 

  36. A. Aspect, P. Grangier, and G. Roger, “Experimental tests of realistic local theories via Bell’s theorem,” Phys. Rev. Lett. 47, 460–6443 (1981).

    Article  ADS  Google Scholar 

  37. R. Gahler and A. Zeilinger, “Wave-optical experiments with very cold neutrons,” Am. J. Phys. 59, 316–324 (1991). https://doi.org/10.1119/1.16540

    Article  ADS  Google Scholar 

  38. A. Zeilinger, R. Gahler, C. Shull, W. Treimer, and W. Mampe, “Single and double-slit diffraction of neutrons,” Rev. Mod. Phys. 60, 1067–1073 (1988).

    Article  ADS  Google Scholar 

  39. H. Schmidt, D. Fischer, Z. Berenyi, C. Cocke, M. Gudmundsson, N. Haag, H. Johansson, A. Kullberg, S. Levin, P. Reinhed, U. Sassenberg, R. Schuch, A. Simonsson, K. Stochkel, and H. Cederquist, “Evidence of wave-particle duality for single fast hydrogen atoms,” Phys. Rev. Lett. 101, 083201 (2008).

    Article  ADS  Google Scholar 

  40. O. Carnal and J. Mlynek, “Young’s double-slit experiment with atoms: A simple atom interferometer,” Phys. Rev. Lett. 66, 2689–2692 (1991).

    Article  ADS  Google Scholar 

  41. A. Cronin, J. Schmiedmayer, and D. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051 (2009).

    Article  ADS  Google Scholar 

  42. C. Bordé, N. Courtier, F. du Burck, A. Goncharov, and M. Gorlicki, “Molecular interferometry experiments,” Phys. Lett. A 188, 187–197 (1994).

    Article  ADS  Google Scholar 

  43. M. Andrews, C. Townsend, H. Miesner, D. Durfee, D. Kurn, and W. Ketterle, “Observation of interference between two Bose condensates,” Science (Washington, DC, U. S.) 275, 637–41 (1997).

    Article  Google Scholar 

  44. K. Davis, M.-O. Mewes, M. Andrews, N. van Druten, D. Durfee, D. Kurn, and W. Ketterle, “Bose-Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  45. W. Schollkopf and P. Toennies, “The nondestructive detection of the helium dimer and trimer,” J. Chem. Phys. 104, 1155–1158 (1996).

    Article  ADS  Google Scholar 

  46. W. Schollkopf and P. Toennies, “Nondestructive mass selection of small Van der Waals clusters,” Science (Washington, DC, U. S.) 266, 1345–8 (1994).

    Article  ADS  Google Scholar 

  47. I. Estermann and O. Stern, “Beugung von Molekularstrahlen,” Z. Phys. 61, 95–125 (1930).

    Article  ADS  Google Scholar 

  48. S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor, and J. Tuxen, “Matter-wave interference of particles selected from a molecular library with masses exceeding 10 000 amu,” Phys. Chem. 15, 14696–14700 (2013).

    Google Scholar 

  49. O. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,” Am. J. Phys. 71, 319–325 (2004).

    Article  ADS  Google Scholar 

  50. S. Sala, R. Ferragut, C. Pistillo, A. Ereditato, A. Ariga, M. Giammarchi, and P. Scampoli, “First demonstration of antimatter wave interferometry,” Sci. Adv. 5, 1–7 (2019).

    Article  Google Scholar 

  51. S. Haroche, J. Raimond, and P. Meystre, “Exploring the quantum: Atoms, cavities, and photons,” Phys. Today 60, 61 (2007).

    Google Scholar 

  52. F. Lindner, M. G. Schätzel, H. Walther, A. Baltuska, E. Goulielmakis, F. Krausz, D. B. Milosevic, D. Bauer, W. Becker, and G. G. Paulus, “Attosecond double-slit experiment,” Phys. Rev. Lett. 95, 040401 (2005).

    Article  ADS  Google Scholar 

  53. M. Wollenhaupt et al., “Interference of ultrashort free electron wave packets,” Phys. Rev. Lett. 89, 173001 (2002).

    Article  ADS  Google Scholar 

  54. B. N. Ivanov, Principles of Modern Physics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  55. L. Biberman, P. Sushkin, and B. Fabrikant, “Diffraction of alternately flying electrons,” Dokl. Akad. Nauk SSSR 66, 185 (1949).

    Google Scholar 

  56. H. Mark and R. Wierl, Die Experimentellen und Theoretishen Grundlagen der Electronenbeugung (Verlag von Gebruder Borntraeger, Berlin, 1931).

    MATH  Google Scholar 

  57. M. Bauer, “On time and space double-slit experiments,” Am. J. Phys. 82, 1087–1092 (2014).

    Article  ADS  Google Scholar 

  58. G. Anido and D. Miller, “Electron diffraction by macroscopic objects,” Am. J. Phys. 52, 49 (1984).

    Article  ADS  Google Scholar 

  59. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1975).

    MATH  Google Scholar 

  60. L. I. Mandel’shtam, Lectures on Optics, Theory of Relativity and Quantum Mechanics (Nauka, Moscow, 1958) [in Russian].

    Google Scholar 

  61. P. Epstein and P. Ehrenfest, Proc. Natl. Acad. Sci. U. S. A. 10, 133 (1924).

    Article  ADS  Google Scholar 

  62. A. A. Sokolov and I. M. Ternov, Quantum Mechanics and Atomic Physics (Prosveshchenie, Moscow, 1970); A. A. Sokolov and I. M. Ternov, “To the quantum theory of the glowing electron,” Zh. Eksp. Teor. Fiz. 25, 698 (1953); A. A. Sokolov, D. D. Ivanenko, and I. M. Ternov, “On excitation of macroscopic oscillations by quantum fluctuations,” Sov. Phys. Dokl. 1, 658 (1957); A. A. Sokolov and V. S. Tumanov, “Uncertainty relation and the theory of fluctuations,” Sov. Phys. JETP 3, 958 (1956).

  63. B. M. Gessen, “The nature of quantum physics,” Nauch. Slovo 7, 19 (1929); B. M. Gessen, “Statistical approach in physics and new substantiation of the theory of probability by R. Mises,” Estestvozn. Marksizm, No. 1, 34 (1929).

    Google Scholar 

  64. A. Einstein and L. Infeld, The Evolution of Physics (Simon and Schuster, New York, 1954).

    MATH  Google Scholar 

  65. A. Oganov and C. Glass, “Crystal structure prediction using ab initio evolutionary techniques: Principles and applications,” J. Chem. Phys. 124, 244704 (2006).

    Article  ADS  Google Scholar 

  66. M. P. Bronshtein, “New crisis of quantum theory,” Nauch. Slovo 1, 40–48 (1931);

    Google Scholar 

  67. M. P. Bronshtein, “The doctrine of chemical valence in modern physics,” Priroda, No. 10, 879–881 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A. Does a Single Electron Have Wave Properties?. Phys. Part. Nuclei Lett. 18, 413–428 (2021). https://doi.org/10.1134/S1547477121040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121040038

Navigation