Skip to main content
Log in

Microscale boundaries of internally stable and unstable soils

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study presents a microscale approach for evaluating the internal instability of natural granular soils using the discrete element method. The coordination number and the stress reduction factor are combined to assess the internal instability of soil. Distinct boundaries are identified between various soils that are internally stable and unstable. The microscale investigations are then compared with constriction and particle size-based criteria. The findings reveal that the constriction-based criterion predicts internal instability with significantly better accuracy. The relationship between microscale parameters and the constriction-based retention ratio is also examined for practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

CSD:

Constriction size distribution

DEM:

Discrete element method

PSD:

Particle size distribution

C u :

Coefficient of uniformity

\(c_{{\text{n}}}\) :

Viscoelastic damping constant for normal contact

\(c_{{\text{t}}}\) :

Viscoelastic damping constant for tangential contact

\(D_{15}^{{\text{c}}}\) :

15% Passing by mass of coarser fraction's particle size distribution

\(D_{{{\text{c}}35}}^{{{\text{c}}*}}\) :

35% Passing of coarser fraction's constriction size distribution plotted by surface area

\(d_{85}^{{\text{f}}}\) :

85% Passing by mass of finer fraction's particle size distribution

\(d_{85}^{{{\text{f}}*}}\) :

85% Passing of finer fraction's particle size distribution plotted by surface area

H :

Incremental finer fraction between particle diameters D and 4D

\(f_{j}^{c}\) :

Force vector at contact c in j direction

F :

Finer fraction at particle diameter D

\(f^{{\text{T}}}\) :

Tangential contact force

\(f^{{\text{N}}}\) :

Normal contact force

\(k_{{\text{n}}}\) :

Elastic constant for normal contact

\(k_{{\text{t}}}\) :

Elastic constant for tangential contact

n :

Porosity

N p :

Number of particles

N c :

Number of contacts

\(N_{{\text{c}}}^{\text{p}}\) :

Number of contacts on particle p

\(N_{{\text{p}}}^{{{\text{fines}}}}\) :

Number of fine particles

\(n_{i}^{{{\text{c}},{\text{p}}}}\) :

The unit-normal vector from particle centroid to contact location

\(p^{\text{p}}\) :

Mean stress in the particle p

\(p^{\prime}\) :

Sample's effective mean stress equals the average of principal stresses

\(p_{{\text{f}}}^{{\prime }}\) :

Mean stress in the fines

R d :

Relative density

V :

Sample's volume

\(V^{\text{p}}\) :

Volume of the particle p

\(x_{i}^{\text{c}}\) :

Location of the contact c

\(x_{i}^{p}\) :

Location of particle centroid

Z :

Coordination number

\(\alpha\) :

Stress reduction factor

µ f :

Coefficient of friction

\(\overline{\sigma }_{ij}\) :

Entire sample's average stress tensor; and

\(\overline{\sigma }_{ij}^{p}\) :

The average stress tensor within a particle p

References

  1. Crawford-Flett K (2014) An improved hydromechanical understanding of seepage-induced instability phenomena in soil. Ph.D. thesis, The University of British Columbia, Vancouver, Canada

    Google Scholar 

  2. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  3. Galindo-Torres SA, Scheuermann A, Mühlhaus HB, Williams DJ (2015) A micro-mechanical approach for the study of contact erosion. Acta Geotech 10:357–368. https://doi.org/10.1007/s11440-013-0282-z

    Article  Google Scholar 

  4. Honjo Y, Haque MA, Tsai KA (1996) Self-filtration behaviour of broadly and gap-graded cohesionless soils. In: Geofilters’ 96, BiTech Publ Montr Canada, pp 227–236

  5. Indraratna B, Israr J, Rujikiatkamjorn C (2015) Geometrical method for evaluating the internal instability of granular filters based on constriction size distribution. J Geotech Geoenviron Eng 141:04015045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001343

    Article  Google Scholar 

  6. Indraratna B, Nguyen VT, Rujikiatkamjorn C (2011) Assessing the potential of internal erosion and suffusion of granular soils. J Geotech Geoenviron Eng 137:550–554. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000447

    Article  Google Scholar 

  7. Indraratna B, Raut AK (2006) Enhanced criterion for base soil retention in embankment dam filters. J Geotech Geoenviron Eng 132:1621–1627. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1621)

    Article  Google Scholar 

  8. Indraratna B, Raut AK, Khabbaz H (2007) Constriction-based retention criterion for granular filter design. J Geotech Geoenviron Eng 133:266–276. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:3(266)

    Article  Google Scholar 

  9. Israr J, Indraratna B (2019) Study of critical hydraulic gradients for seepage-induced failures in granular soils. J Geotech Geoenviron Eng 145:1–15. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002062

    Article  Google Scholar 

  10. Israr J (2016) Internal instability of granular filters under cyclic loading. Ph.D. thesis, University of Wollongong, Wollongong, Australia

    Google Scholar 

  11. Kenney TC, Lau D (1985) Internal stability of granular filters. Can Geotech J 22:215–225. https://doi.org/10.1139/t85-029

    Article  Google Scholar 

  12. Kezdi A (1979) Soil physics—selected topics. Elsevier, Amsterdam

    Google Scholar 

  13. Kloss C, Goniva C, Hager A et al (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn Int J 12:140. https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  14. Kovacs G (1981) Seepage hydraulics. Elsevier, Amsterdam

    Google Scholar 

  15. Langroudi FM, Soroush A, Shourijeh PT (2015) A comparison of micromechanical assessments with internal stability/instability criteria for soils. Powder Technol 276:66–79. https://doi.org/10.1016/j.powtec.2015.02.014

    Article  Google Scholar 

  16. Li M, Fannin RJ (2008) Comparison of two criteria for internal stability of granular soil. Can Geotech J 45:1303–1309. https://doi.org/10.1139/T08-046

    Article  Google Scholar 

  17. Li M (2008) Seepage induced instability in widely graded soils. Ph.D. thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  18. Luo Y, Luo B, Xiao M (2020) Effect of deviator stress on the initiation of suffusion. Acta Geotech 15:1607–1617. https://doi.org/10.1007/s11440-019-00859-x

    Article  Google Scholar 

  19. Mindlin RD, Deresiewicz H (1989) Elastic spheres in contact under varying oblique forces. In: The collected papers of Raymond D. Mindlin volume I, pp 269–286

  20. Muhlhaus H, Gross L, Scheuermann A (2015) Sand erosion as an internal boundary value problem. Acta Geotech 10:333–342. https://doi.org/10.1007/s11440-014-0322-3

    Article  Google Scholar 

  21. Nguyen NHT, Bui HH, Arooran S et al (2019) Discrete element method investigation of particle size distribution effects on the flexural properties of cement-treated base. Comput Geotech 113:103096. https://doi.org/10.1016/j.compgeo.2019.103096

    Article  Google Scholar 

  22. O’Sullivan C (2011) Particulate discrete element modelling—a geomechanics perspective. Spon Press/Taylor & Francis, London

    Book  Google Scholar 

  23. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  24. Salot C, Gotteland P, Villard P (2009) Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul Matter 11:221–236. https://doi.org/10.1007/s10035-009-0138-2

    Article  MATH  Google Scholar 

  25. Scheuermann A, Mühlhaus HB (2015) Infiltration instabilities in granular materials: theory and experiments. Acta Geotech 10:289. https://doi.org/10.1007/s11440-015-0382-z

    Article  Google Scholar 

  26. Shire T, O’Sullivan C, Hanley KJ, Fannin RJ (2014) Fabric and effective stress distribution in internally unstable soils. J Geotech Geoenviron Eng 140:1–11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001184

    Article  Google Scholar 

  27. Skempton AW, Brogan JM (1994) Experiments on piping in sandy gravels. Géotechnique 44:449–460

    Article  Google Scholar 

  28. Slangen P (2015) On the influence of effective stress and micro-structure on suffusion and suffosion. Ph.D. thesis, The University of British Columbia, Vancouver, Canada

    Google Scholar 

  29. Sufian A, Artigaut M, Shire T, O’Sullivan C (2021) Influence of fabric on stress distribution in gap-graded soil. J Geotech Geoenviron Eng 147:04021016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002487

    Article  Google Scholar 

  30. Thornton C (2000) Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50:43–53

    Article  Google Scholar 

  31. To P, Scheuermann A, Williams DJ (2018) Quick assessment on susceptibility to suffusion of continuously graded soils by curvature of particle size distribution. Acta Geotech 13:1241–1248. https://doi.org/10.1007/s11440-017-0611-8

    Article  Google Scholar 

  32. Tran KM, Bui HH, Sánchez M, Kodikara J (2020) A DEM approach to study desiccation processes in slurry soils. Comput Geotech 120:103448. https://doi.org/10.1016/j.compgeo.2020.103448

    Article  Google Scholar 

  33. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239–250. https://doi.org/10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  34. Xiao M, Shwiyhat N (2012) Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils. Geotech Test J 35:1–11. https://doi.org/10.1520/GTJ104594

    Article  Google Scholar 

Download references

Acknowledgements

The assistance provided by Dr. Thanh Trung Nguyen, Research Fellow, Transport Research Centre, University of Technology Sydney, Australia, to the second author during the initial stages of his Ph.D. is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddhima Indraratna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indraratna, B., Haq, S., Rujikiatkamjorn, C. et al. Microscale boundaries of internally stable and unstable soils. Acta Geotech. 17, 2037–2046 (2022). https://doi.org/10.1007/s11440-021-01321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01321-7

Keywords

Navigation