Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis

An Author Correction to this article was published on 19 April 2022

This article has been updated

Abstract

Artificial metalloenzymes result from anchoring an organometallic catalyst within an evolvable protein scaffold. Thanks to its dimer of dimers quaternary structure, streptavidin allows the precise positioning of two metal cofactors to activate a single substrate, thus expanding the reaction scope accessible to artificial metalloenzymes. To validate this concept, we report herein on our efforts to engineer and evolve an artificial hydroaminase based on dual gold activation of alkynes. Guided by modelling, we designed a chimeric streptavidin equipped with a hydrophobic lid shielding its active site, which enforces the advantageous positioning of two synergistic biotinylated gold cofactors. Three rounds of directed evolution using Escherichia coli cell-free extracts led to the identification of mutants favouring either the anti-Markovnikov product (an indole carboxamide with 96% regioselectivity, 51 turnover numbers), resulting from a dual gold σ,π-activation of an ethynylphenylurea substrate, or the Markovnikov product (a phenyl-dihydroquinazolinone with 99% regioselectivity, 333 turnover numbers), resulting from the π-activation of the alkyne by gold.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering and evolving an HAMase based on dual gold activation of alkynes.
Fig. 2: Chemo-genetic optimization of HAMase activity.
Fig. 3: Design and structural characterization of the chimeric ArM.
Fig. 4: Analysis of the transition state structure and close-lying amino acid residues in chimeric Sav.
Fig. 5: Directed evolution of a HAMase based on Sav-SOD.

Data availability

Data relating to the materials and methods, detailed substrate and cofactor synthesis, optimization studies, catalytic experiments, protein expression, MD and DFT calculations, selected UPLC-MS chromatograms, high-resolution MS spectra and NMR studies are available in the Supplementary Information. Crystallographic data for biot-Au 2·Sav-SOD K121A is available free of charge from the PDB under reference number 7ALX. All other data are available from the authors upon request.

Change history

References

  1. McLean, E. B. & Lee, A. L. Golden potential. Nat. Chem. 11, 760–761 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Dorel, R. & Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pflästerer, D. & Hashmi, A. S. K. Gold catalysis in total synthesis – recent achievements. Chem. Soc. Rev. 45, 1331–1367 (2016).

    Article  PubMed  Google Scholar 

  4. Stephen, A., Hashmi, K., Braun, I., Rudolph, M. & Rominger, F. The role of gold acetylides as a selectivity trigger and the importance of gem-diaurated species in the gold-catalyzed hydroarylating-aromatization of arene-diynes. Organometallics 31, 644–661 (2012).

    Article  Google Scholar 

  5. Gimeno, A., Medio-Simón, M., De Arellano, C. R., Asensio, G. & Cuenca, A. B. NHC-stabilized gold(I) complexes: suitable catalysts for 6-exo-dig heterocyclization of 1-(o-ethynylaryl)ureas. Org. Lett. 12, 1900–1903 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Ye, L., Wang, Y., Aue, D. H. & Zhang, L. Experimental and computational evidence for gold vinylidenes: generation from terminal alkynes via a bifurcation pathway and facile C–H insertions. J. Am. Chem. Soc. 134, 31–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, X., Rudolph, M. & Hashmi, A. S. K. Dual gold catalysis – an update. Chem. Commun. 55, 12127–12135 (2019).

    Article  CAS  Google Scholar 

  8. Wang, W. et al. Dinuclear gold catalysis. Chem. Soc. Rev. 50, 1874–1912 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Cheong, P. H. Y., Morganelli, P., Luzung, M. R., Houk, K. N. & Toste, F. D. Gold-catalyzed cycloisomerization of 1,5-allenynes via dual activation of an ene reaction. J. Am. Chem. Soc. 130, 4517–4526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertini, I., Gray, H. B., Valentine, J. S. & Stiefel, E. I. Biological Inorganic Chemistry: Structure and Reactivity (University Science Books, 2007).

  11. Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Devaraj, N. K. The future of bioorthogonal chemistry. ACS Cent. Sci. 4, 952–959 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A. & Berkland, C. J. Practical considerations, challenges, and limitations of bioconjugation via azide–alkyne cycloaddition. Bioconjug. Chem. 29, 686–701 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boren, B. C. et al. Ruthenium-catalyzed azide–alkyne cycloaddition: scope and mechanism. J. Am. Chem. Soc. 130, 8923–8930 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Vidal, C., Tomás-Gamasa, M., Destito, P., López, F. & Mascareñas, J. L. Concurrent and orthogonal gold(i) and ruthenium(ii) catalysis inside living cells. Nat. Commun. 9, 1913 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tsubokura, K. et al. In vivo gold complex catalysis within live mice. Angew. Chem. Int. Ed. 56, 3579–3584 (2017).

    Article  CAS  Google Scholar 

  17. Pérez-López, A. M. et al. Gold-triggered uncaging chemistry in living systems. Angew. Chem. Int. Ed. 56, 12548–12552 (2017).

    Article  Google Scholar 

  18. Jung Jou, M. et al. Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide. Chem. Commun. 46, 7218–7220 (2009).

    Article  Google Scholar 

  19. Wang, J. B., Wu, Q. Q., Min, Y. Z., Liu, Y. Z. & Song, Q. H. A novel fluorescent probe for Au(iii)/Au(i) ions based on an intramolecular hydroamination of a Bodipy derivative and its application to bioimaging. Chem. Commun. 48, 744–746 (2012).

    Article  Google Scholar 

  20. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  21. Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

    Article  CAS  Google Scholar 

  22. Studer, S. et al. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 362, 1285–1288 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Gu, Y., Natoli, S. N., Liu, Z., Clark, D. S. & Hartwig, J. F. Site-selective functionalization of (sp3)C−H bonds catalyzed by artificial metalloenzymes containing an iridium-porphyrin cofactor. Angew. Chem. Int. Ed. 58, 13954–13960 (2019).

    Article  CAS  Google Scholar 

  24. Roelfes, G. LmrR: a privileged scaffold for artificial metalloenzymes. Acc. Chem. Res. 52, 545–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Hyster, T. K., Knörr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338, 500–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, Z. & Roelfes, G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat. Catal. 3, 289–294 (2020).

    Article  CAS  Google Scholar 

  29. Alonso, S. et al. Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nat. Catal. 3, 319–328 (2020).

    Article  CAS  Google Scholar 

  30. Martínez-Calvo, M. et al. Intracellular deprotection reactions mediated by palladium complexes equipped with designed phosphine ligands. ACS Catal. 8, 6055–6061 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Monnard, F. W., Nogueira, E. S., Heinisch, T., Schirmer, T. & Ward, T. R. Human carbonic anhydrase II as host protein for the creation of artificial metalloenzymes: the asymmetric transfer hydrogenation of imines. Chem. Sci. 4, 3269–3274 (2013).

    Article  CAS  Google Scholar 

  32. Oohora, K., Onoda, A. & Hayashi, T. Hemoproteins reconstituted with artificial metal complexes as biohybrid catalysts. Acc. Chem. Res. 52, 945–954 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Mirts, E. N., Petrik, I. D., Hosseinzadeh, P., Nilges, M. J. & Lu, Y. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science 361, 1098–1101 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lewis, J. C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis. Acc. Chem. Res. 52, 576–584 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Lombardi, A., Pirro, F., Maglio, O., Chino, M. & DeGrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chino, M. et al. Artificial diiron enzymes with a de novo designed four-helix bundle. Struct. Eur. J. Inorg. 2015, 3371–3390 (2015).

    Article  CAS  Google Scholar 

  37. Grimm, A. R. et al. A whole cell E. coli display platform for artificial metalloenzymes: poly(phenylacetylene) production with a rhodium–nitrobindin metalloprotein. ACS Catal. 8, 2611–2614 (2018).

    Article  CAS  Google Scholar 

  38. Eda, S. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2, 780–792 (2019).

    Article  CAS  Google Scholar 

  39. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heinisch, T. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: challenges and opportunities. Acc. Chem. Res. 49, 1711–1721 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Vornholt, T. et al. Systematic engineering of artificial metalloenzymes for new-to-nature reactions. Sci. Adv. 7, eabe4208 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Gimeno, A. et al. Competitive gold-activation modes in terminal alkynes: an experimental and mechanistic study. Chem. Eur. J. 20, 683–688 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Vreeken, V. et al. Well-defined dinuclear gold complexes for preorganization-induced selective dual gold catalysis. Angew. Chem. Int. Ed. 55, 10042–10046 (2016).

    Article  CAS  Google Scholar 

  44. Ye, D. et al. Gold-catalyzed intramolecular hydroamination of terminal alkynes in aqueous media: efficient and regioselective synthesis of indole-1-carboxamides. Green Chem. 11, 1201–1208 (2009).

    Article  CAS  Google Scholar 

  45. Breker, V., Sak, H., Baracchi-Krause, G. & Krause, N. Synthesis and properties of a biotin-tagged NHC–gold complex. Tetrahedron Lett. 56, 3390–3392 (2015).

    Article  CAS  Google Scholar 

  46. Collado, A., Gómez-Suárez, A., Martin, A. R., Slawin, A. M. Z. & Nolan, S. P. Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. Chem. Commun. 49, 5541–5543 (2013).

    Article  CAS  Google Scholar 

  47. Kajetanowicz, A., Chatterjee, A., Reuter, R. & Ward, T. R. Biotinylated metathesis catalysts: synthesis and performance in ring closing metathesis. Catal. Lett. 144, 373–379 (2014).

    Article  CAS  Google Scholar 

  48. Anhäuser, L., Teders, M., Rentmeister, A. & Glorius, F. Bio-additive-based screening: toward evaluation of the biocompatibility of chemical reactions. Nat. Protoc. 14, 2599–2626 (2019).

    Article  PubMed  Google Scholar 

  49. Muñoz Robles, V., Vidossich, P., Lledós, A., Ward, T. R. & Maréchal, J. D. Computational insights on an artificial imine reductase based on the biotin–streptavidin technology. ACS Catal. 4, 833–842 (2014).

    Article  Google Scholar 

  50. Spagnolo, L. et al. Unique features of the sodC-encoded superoxide dismutase from Mycobacterium tuberculosis, a fully functional copper-containing enzyme lacking zinc in the active site. J. Biol. Chem. 279, 33447–33455 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Loving, G. & Imperiali, B. Thiol-reactive derivatives of the solvatochromic 4-N,N-dimethylamino-1,8-naphthalimide fluorophore: a highly sensitive toolset for the detection of biomolecular interactions. Bioconjug. Chem. 20, 2133–2141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alonso-Cotchico, L., Rodrĺguez-Guerra, J., Lledós, A. & Maréchal, J. D. Molecular modeling for artificial metalloenzyme design and optimization. Acc. Chem. Res. 53, 896–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. 113, 6378–6396 (2009).

    Article  CAS  Google Scholar 

  54. Kiss, P. T. & Baranyai, A. A systematic development of a polarizable potential of water. J. Chem. Phys. 138, 204507 (2013).

    Article  PubMed  Google Scholar 

  55. Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 2016, 5.6.1–5.6.37 (2016).

    Google Scholar 

  56. Case, D. A. et al. AMBER 2018. (Univ. California San Francisco, 2018).

  57. Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Nanda, V. & Koder, R. L. Designing artificial enzymes by intuition and computation. Nat. Chem. 2, 15–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Morris, J. H., Huang, C. C., Babbitt, P. C. & Ferrin, T. E. structureViz: linking Cytoscape and UCSF Chimera. Bioinformatics 23, 2345–2347 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Pettersen, E. F. et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Wilson, Y. M., Dürrenberger, M., Nogueira, E. S. & Ward, T. R. Neutralizing the detrimental effect of glutathione on precious metal catalysts. J. Am. Chem. Soc. 136, 8928–8932 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Hestericová, M. et al. Directed evolution of an artificial imine reductase. Angew. Chem. Int. Ed. 57, 1863–1868 (2018).

    Article  Google Scholar 

  63. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Qu, G., Li, A., Acevedo-Rocha, C. G., Sun, Z. & Reetz, M. T. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 59, 13204–13231 (2020).

    Article  CAS  Google Scholar 

  65. Wen, J. et al. Naphthalimide-rhodamine based fluorescent probe for ratiometric sensing of cellular pH. Chin. Chem. Lett. 28, 2005–2008 (2017).

    Article  CAS  Google Scholar 

  66. Chu, V., Stayton, P. S., Freitag, S., Le Trong, I. & Stenkamp, R. E. Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system. Protein Sci. 7, 848–859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  68. Rodríguez-Guerra Pedregal, J., Sciortino, G., Guasp, J., Municoy, M. & Maréchal, J.-D. GaudiMM: a modular multi-objective platform for molecular modeling. J. Comput. Chem. 38, 2118–2126 (2017).

    Article  PubMed  Google Scholar 

  69. Miller, B. R. et al. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.R.W. thanks the European Research Council (ERC) advanced grant (the Directed Evolution of Artificial Metalloenzymes (DrEAM), grant agreement 694424), the Swiss National Science Foundation (grant SNF 200020_182046) and the National Centre of Competence in Research (NCCR) Molecular Systems Engineering. B.L. thanks the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 765497 (THERACAT) for generous support. We thank the Analytical Team of the Chemistry Department of the University of Basel, in particular M. Pfeffer and S. Mittelheisser, for high-resolution MS analysis and D. Häussinger for assistance with the two-dimensional NMR experiments. We thank J. Klehr and A. Santos Kron for their assistance with protein expression and protein purification as well as J.G. Rebelein for assistance with the protein crystallography. L.T.-S., A.L. and J.-D.M. thank the Spanish Ministerio de Economía, Industria y Competitividad MINECO (grant CTQ2017-87889-P) and the Generalitat de Catalunya (2017SGR1323) for the financial support. L.T.-S. thanks the Spanish Ministerio de Ciencia, Innovación y Universidades (grant FPU18/05895) for the financial support. We thank G. Sciortino and J.E. Sánchez Aparicio for assistance with the molecular modelling set-up and analysis.

Author information

Authors and Affiliations

Authors

Contributions

T.R.W., R.L.P. and F.C. conceived and designed the study. F.C., M.M.P. and B.L. contributed to the synthesis of the substrates, products and complexes. N.V.I., D.C.S., R.L.P. and F.C. contributed to mutagenesis, protein expression, protein purification and protein characterization. N.V.I. performed the crystallization, X-ray structure determinations and native MS experiments. F.C. performed the catalytic, preparative and deuterium-labelling experiments, designed the screening protocol and recorded the data. T.R.W., F.C. and N.V.I. analysed the data. J.D.M., A.L. and L.T.S. contributed to the molecular modelling experiments. T.R.W., F.C. and N.V.I. wrote the manuscript, which was further supplemented through contributions from R.L.P. and J.-D.M. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Jean-Didier Maréchal, Ryan L. Peterson or Thomas R. Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–11, Figs. 1–40 and Tables 1–17.

Reporting Summary

Supplementary Data 1

DFT-optimized structure of transition states.

Supplementary Data 2

Coordinates from MD simulations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christoffel, F., Igareta, N.V., Pellizzoni, M.M. et al. Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nat Catal 4, 643–653 (2021). https://doi.org/10.1038/s41929-021-00651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00651-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing