Skip to main content
Log in

Preparation and characterization of boron films used for boron-lined gaseous neutron detectors

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Boron-lined gaseous neutron detectors are being widely used in neutron detection to replace 3He proportional counters, and the boron film’s parameters comprise the key factors influencing the performance of such detectors. However, the method of characterizing boron film is relatively simple at present. In this study, boron films stuck to ultrathin glass substrate with different mass proportions of epoxy to natural boron (MPENBs) were prepared. A variety of characterization methods, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, white-light interferometry, and multiple tape tests, were used to test the boron films simultaneously, and the test results are discussed herein. Moreover, neutron imaging was conducted to analyze the uniformity of boron-10 atoms. These characterization results demonstrate that the optimized MPENB formulation is 0.16 with the boron atomic ratio of chemical elements (ARCE) at approximately 68.8% and surface roughness Sa = 1.457 μm and that the structure of boron film is uniform and fluffy, contributing to improving the boron-lined method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.T. Lintereur, R.T. Kouzes et al., Office of scientific & technical information technical reports, vol. 1 (2009), p. 18938

  2. A.T. Simone, C. Stephen et al., IEEE Trans. Nucl. Sci. 1, 10 (2017)

    Google Scholar 

  3. C.M. Quick, A. Marvin et al., Texas A&M University, vol. 1 (2018), p. 1

  4. Y. Seki, A. Taketani et al., Nucl. Instrum. Methods A. 148, 870 (2017)

    Google Scholar 

  5. B.M. Van Der Ende, J. Atanackovic et al., Nucl. Instrum. Methods A. 40, 820 (2016)

    Google Scholar 

  6. M. Anastasopoulos, R. Bebb et al., JINST. 12, P04030 (2017)

    Article  Google Scholar 

  7. F. Piscitelli, G. Mauri et al., JINST. 13, P05009 (2018)

    Article  Google Scholar 

  8. C. Deng, X.G. Tuo et al., IEEE Nucl. Sci. Symp. Conf. Rec. 1, 978 (2009)

    Google Scholar 

  9. G. Mauri, I. Apostolidis et al., JINST. 15, P03010 (2020)

    Article  Google Scholar 

  10. L.M.S. Margato, A. Morozov et al., JINST. 15, P06007 (2020)

    Article  Google Scholar 

  11. D.A. Shea, D. Morganet et al., Congressional Research Service, vol 7 (2011), p R41419

  12. A.M. Arkharov, I.A. Arkharov et al., Chem. Pet. Eng. 1, 49 (2013)

    Google Scholar 

  13. A.J. HurdAlan, R.T. Kouzeset, Eur. Phys. J. Plus. 129, 236 (2014)

    Article  Google Scholar 

  14. G. Croci, A. Muraro et al., EPL 123, 52001 (2018)

    Article  ADS  Google Scholar 

  15. E. Azizov, V. Barsuk et al., J. Nucl. Mater. 463, 792 (2015)

    Article  ADS  Google Scholar 

  16. B. Clement, A. Bes et al., JINST. 14, P09003 (2019)

    Article  Google Scholar 

  17. N.S. Edwards, K.A. Nelson et al., Nucl. Instrum. Methods A. 85, 898 (2018)

    Google Scholar 

  18. Q.X. Feng, R.Z. Qi et al., Infrared Laser Eng. 48, S217001–S217011 (2019)

    Article  Google Scholar 

  19. C. Hglund, J. Appl. Phys. 111, 778 (2012)

    Google Scholar 

  20. Z. Fang, C. Deng et al., JINST. 14, P12003 (2019)

    Article  Google Scholar 

  21. H.Y. Huo, H. Li et al., Nucl. Instrum. Methods A. 953, 163063 (2020)

    Article  Google Scholar 

  22. J. Guapacha, E.M. Vallés et al., Polym. Bull. 74, 2297 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Natural Science Foundation of China (Nos. 42004151 and 41904162) and in part by the Sichuan Science and Technology Program (No. 2021JDRC0011) and the Open Foundation of Artificial Intelligence Key Laboratory of Sichuan Province (No. 2020RZJ01). We thank the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, for providing the neutron imaging test. We thank Professor Yang Yigang of Tsinghua University for providing the valuable recommendation of using boron-lined method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Tuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Wang, Q., Wu, Y. et al. Preparation and characterization of boron films used for boron-lined gaseous neutron detectors. J. Korean Phys. Soc. 79, 606–612 (2021). https://doi.org/10.1007/s40042-021-00256-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00256-2

Keywords

Navigation