Skip to main content
Log in

A model of artificial biological time series generation

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper presents a novel model of artificial biological time series generation. We employed a cellular automata (CA) system that comprises self-replicating and mutually competing loops. Our self-replicating system is an advanced version of Chou & Reggia’s system (Physica D 110, 252–276). The complex self-replicating CA loops were developed using a construction scheme in which we introduce a unique measure of the CA to quantify the activity of the loops. By summing the loop activities globally and observing the time evolution of the sum, we obtain an artificial time series. The power spectrum of the resulting time series exhibits \({1 \mathord{\left/ {\vphantom {1 {f^{\alpha } }}} \right. \kern-\nulldelimiterspace} {f^{\alpha } }}\) scaling behavior. The exponent \(\alpha\) in the \({1 \mathord{\left/ {\vphantom {1 {f^{\alpha } }}} \right. \kern-\nulldelimiterspace} {f^{\alpha } }}\) power spectrum of the unconstrained self-replicating system is \(\alpha \approx 1.5\). Constraints on loop dynamics, leading to larger-scale death in the loop colonies, are implemented in our CA. With the application of the constraints, the value of \(\alpha\) is lowered to nearly 1. The results show that self-replication and death in the CA space play the roles of excitatory and inhibitory synaptic functions, respectively, in a neuronal network. The self-replication/death balance control in our study could modulate the scaling exponent \(\alpha\) in the power spectrum, similar to the activation/inhibition balance control in neural networks and local field potential (LFP) simulations in recent studies. The calculation of the largest Lyapunov exponent, L1, shows the chaotic nature of the time series. The form of our CA system resembles that of neuronal potential transmission and replication to nearby neurons. The results of this study suggest another feasible concept for the origin of biological signals. Executable codes associated with this study are freely accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  Google Scholar 

  2. P. Dutta, P.M. Horn, Rev. Mod. Phys. 53, 497 (1981)

    Article  ADS  Google Scholar 

  3. A. Amir, Y. Oreg, Y. Imry, Proc. Natl. Acad. Sci. 109, 1850 (2011)

    Article  ADS  Google Scholar 

  4. E.W. Montroll, M.F. Schlesinger, Proc. Natl. Acad. Sci. USA 79, 3380 (1982)

    Article  ADS  Google Scholar 

  5. T. Geisel, A. Zacherl, G. Radons, Phys. Rev. Lett. 59, 2503 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Ben-Mizrachi, I. Procaccia, N. Rosenberg, A. Schmidt, H.G. Schuster, Phys. Rev. A 31, 1830 (1985)

    Article  ADS  Google Scholar 

  7. B. Kaulakys, V. Gontis, M. Alaburda, Phys. Rev. E 71, 051105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.A. Ali, Phys. Rev. E 52, R4595(R) (1995)

    Article  ADS  Google Scholar 

  9. S. Maslov, C. Tang, Y.C. Zhang, Phys. Rev. Lett. 83, 2449 (1999)

    Article  ADS  Google Scholar 

  10. P. De Los Rios, Y.C. Zhang, Phys. Rev. Lett. 82, 472 (1999)

    Article  ADS  Google Scholar 

  11. J. Davidsen, M. Paczuski, Phys. Rev. E 66, 050101(R) (2002)

    Article  ADS  Google Scholar 

  12. L. Laurson, M.J. Alava, S. Zapperi, J. Stat. Mech. (2005). https://doi.org/10.1088/1742-5468/2005/11/L11001

    Article  Google Scholar 

  13. D. Dhar, Phys. A 369, 29 (2006)

    Article  MathSciNet  Google Scholar 

  14. A.C. Yadav, R. Ramaswamy, D. Dhar, Phys. Rev. E. 85, 061114 (2012)

    Article  ADS  Google Scholar 

  15. G. Grinstein, T. Hwa, H.J. Jeldtoft Jensen, Phys. Rev. A 45, R559(R) (1992)

    Article  ADS  Google Scholar 

  16. G.W. Wornell, Proc. IEEE 81, 1428 (1993)

    Article  Google Scholar 

  17. N.J. Arnold, G. Wade, Electron. Lett. 27, 1169 (1991)

    Article  ADS  Google Scholar 

  18. H.J. Jensen, K. Christensen, H.C. Fogedby, Phys. Rev. B 40, 7425 (1989)

    Article  ADS  Google Scholar 

  19. V. Frette, K. Christinasen, A. Malthe-Sørenssen, J. Feder, T. Jøssang, P. Meaken, Nature 379, 49 (1996)

    Article  ADS  Google Scholar 

  20. J.M. Halley, Trends Ecol. Evol. 11, 33 (1996)

    Article  Google Scholar 

  21. J.H. Steele, Nature 313, 355 (1985)

    Article  ADS  Google Scholar 

  22. S.L. Pimm, A. Redfearn, Nature 334, 613 (1988)

    Article  ADS  Google Scholar 

  23. C.T. Kello, G.D. Brown, R. Ferrer-I-Cancho, J.G. Holden, K. Linkenkaer-Hansen, T. Rhodes, G.C. Van Orden, Trends Cogn. Sci. 14, 223 (2010)

    Article  Google Scholar 

  24. B. Voytek, M.A. Kramer, J. Case, K.Q. Lepage, Z.R. Tempesta, R.T. Knight, A. Gazzaley, J. Neurosci. 35, 13257 (2015)

    Article  Google Scholar 

  25. E. Novikov, A. Novikov, D. Shannahoff-Khalsa, B. Schwartz, J. Wright, Phys. Rev. E. 56, R2387 (1997)

    Article  ADS  Google Scholar 

  26. L.M. Ward, Dynamical Cognitive Science (MIT Press, Cambridge MA, 2002)

    Google Scholar 

  27. W.J. Freeman, L.J. Rogers, M.D. Holmes, D.L. Silbergeld, J. Neurosci. Meth. 95, 111 (2000)

    Article  Google Scholar 

  28. K. Linkenkaer-Hansen, V.V. Nikouline, J.M. Palva, R.J. Ilmoniemi, J. Neurosci. 21, 1370 (2001)

    Article  Google Scholar 

  29. W.J. Freeman, Clin. Neurophysiol. 117, 572 (2006)

    Article  Google Scholar 

  30. H.R. Kim, H. Go, S. Kim, J. Korean Phys. Soc. 73, 377 (2018)

    Article  ADS  Google Scholar 

  31. H.R. Kim, S. Kim, S. Park, J. Korean Phys. Soc. 34, 390 (1999)

    Google Scholar 

  32. D. Kim, J. Jeong, K. Kim, J. Chae, S. Jin, K. Ahn, H. Myrick, S. Yoon, H.R. Kim, S. Kim, Alcohol. Clin. Exp. Res. 27, 1955 (2006)

    Article  Google Scholar 

  33. H.R. Kim, K. Jung, S. Kim, K. Ko, Y. Lee, J. Kim, Early Hum. Dev. 75, 35 (2003)

    Article  Google Scholar 

  34. H.R. Kim, C. Guilleminault, S. Hong, D. Kim, S. Kim, H. Go, S. Lee, J. Sleep Res. 10, 193 (2001)

    Article  Google Scholar 

  35. H.R. Kim, H. Kim, S. Kim, H. Go, D. Kim, Biol. Cybern. 85, 1 (2001)

    Article  Google Scholar 

  36. H.R. Kim, S. Kim, D. Kim, Y. Kim, S. Park, J. Chae, K. Kim, K. Lee, S. Lee, Am. J. Chinese. Med. 29, 23 (2001)

    Article  Google Scholar 

  37. B.F. Apostol, Phys. Lett. A 351, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. B.F. Apostol, L.C. Cune, M. Apostol, Rom. J. Phys. 53, 593 (2008)

    Google Scholar 

  39. F. Omori, J. Coll. Sci. Imper. Univ. Tokyo 7, 111 (1894)

    Google Scholar 

  40. H.R. Kim, D. Kihara, Proteins 82, 3255 (2014)

    Article  Google Scholar 

  41. H.R. Kim, D. Kihara, Proteins 84, 105 (2016)

    Article  Google Scholar 

  42. L.X. Peterson, H.R. Kim, J. Esquivel-Rodriguez, A. Roy, X. Han, W. Shin, J. Zhang, G. Terashi, M. Lee, D. Kihara, Proteins 85, 513 (2017)

    Article  Google Scholar 

  43. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2002)

    Google Scholar 

  44. J. Von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, 1996)

    Google Scholar 

  45. W. Stallings, L. William, Computer Security: Principles and Practice (Pearson, Boston, 2012)

    Google Scholar 

  46. M. Komosinski, A. Adamatzky, Artificial Life Models in Software (Springer, New York, 2009)

    Book  MATH  Google Scholar 

  47. E. Moulin, N. Giuseppone, Constitutional Dynamic Chemistry (Springer, Berlin, 2011)

    Google Scholar 

  48. R.A. Freitas, R.C. Merkle, Kinematic Self-Replicating Machines (Landes Bioscience, Georgetown, 2004)

    Google Scholar 

  49. G. Von Tiesenhausen, W.A. Darbro, Self-Replicating Systems: A system engineering approach, in NASA Technical Memorandum 78304 (Washington D.C., 1980)

  50. T. Wang, R. Sha, R. Dreyfus, M.E. Leunissen, C. Maass, D.J. Pine, P.M. Chaikin, N.C. Seeman, Nature 478, 225 (2011)

    Article  ADS  Google Scholar 

  51. E.V. Koonin, T.G. Senkevich, V.V. Dolja, Biol. Direct 1, 29 (2006)

    Article  Google Scholar 

  52. Y.E. Karapetyan, Proc. Natl. Acad. Sci. USA 109, E461 (2012)

    Article  ADS  Google Scholar 

  53. J. Masel, V.A. Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999)

    Article  Google Scholar 

  54. M. Gardner, Sci. Am. 223, 120 (1970)

    Article  Google Scholar 

  55. S. Ninagawa, M. Yoneda, S. Hirose, Physica D 118, 49 (1988)

    Article  ADS  Google Scholar 

  56. M. Andrecut, Mod. Phys. Lett. B 14, 53 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  57. E.F. Codd, Cellular Automata (Academc Press, New York, 1968)

    MATH  Google Scholar 

  58. C.G. Langton, Physica D 10, 135 (1984)

    Article  ADS  Google Scholar 

  59. H.H. Chou, J.A. Reggia, Physica D 110, 252 (1997)

    Article  ADS  Google Scholar 

  60. M. Sipper, Artif. Life 4, 237 (1998)

    Article  Google Scholar 

  61. E.F. Moore, Sci. Am. 195, 118 (1956)

    Article  Google Scholar 

  62. G. Buzsáki, C.A. Anastassiou, C. Koch, Nat. Rev. Neurosci. 13, 407 (2012)

    Article  Google Scholar 

  63. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Phys. Rev. A 45, 3403 (1992)

    Article  ADS  Google Scholar 

  64. J. Jeong, S.Y. Kim, S.H. Han, Electroen. Clin. Neuro. 106, 220 (1998)

    Article  Google Scholar 

  65. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  66. D. Mange, A. Stauffer, E. Petraglio, G. Tempesti, Physica D 191, 178 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  67. van Vreeswijk, H. Sompolinsky, Science 274, 1724 (1996)

    Article  ADS  Google Scholar 

  68. B. Haider, A. Duque, A.R. Hasenstaub, D.A. McCormick, J. Neurosci. 26, 4535 (2006)

    Article  Google Scholar 

  69. F. Lombardi, H.J. Herrmann, L. de Arcangelis, Chaos 27, 047402 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  70. R. Gao, E.J. Peterson, B. Voytek, Neuroimage 158, 70 (2017)

    Article  Google Scholar 

  71. R.M. May, Proc. R. Soc. Lond. A 413, 27 (1987)

    Article  ADS  Google Scholar 

  72. J.S. Isaacson, M. Scanziani, Neuron 72, 231 (2011)

    Article  Google Scholar 

  73. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  74. T.M. Sales, J.B.C. Garcia, T.I. Jyh, T.I. Ren, M.A.F. Gomes, Phys. A 197, 604 (1993)

    Article  Google Scholar 

  75. V. Medel, M. Irani, T. Ossandón, G. Boncompte, bioRxiv (2020). https://doi.org/10.1101/2020.09.15.298497

    Article  Google Scholar 

Download references

Acknowledgements

This work passed the internal review of MPI-PKS and was archived in the MPG edoc server (https://web.archive.org/web/20200609112257/http://edoc.mpg.de/330829). This study was presented in the 2020 KPS fall meeting as P1-bp.001. The work was supported by the 2020 Hannam University Research Fund. Any questions and executable code requests are welcomed by the author (hr_kim@hnu.kr; k52hr01@gmail.com)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Rae Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 72 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HR. A model of artificial biological time series generation. J. Korean Phys. Soc. 79, 412–427 (2021). https://doi.org/10.1007/s40042-021-00259-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00259-z

Keywords

Navigation