Skip to main content
Log in

A Second Order Energy Stable BDF Numerical Scheme for the Swift–Hohenberg Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a second-order energy stable numerical scheme for the Swift–Hohenberg equation, with a mixed finite element approximation in space. We employ second-order backward differentiation formula scheme with a second-order stabilized term, which guarantees the long time energy stability. We prove that our two-step scheme is unconditionally energy stable and uniquely solvable. Furthermore, we present an optimal error estimate for the scheme. In the end, several numerical experiments are presented to support our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Baskaran, A., Hu, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013a)

    Article  MathSciNet  Google Scholar 

  2. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013b). https://doi.org/10.1137/120880677

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Wenbin, Gunzburger, Max, Sun, Dong, Wang, Xiaoming: Efficient and long-time accurate second-order methods for the Stokes–Darcy system. SIAM J. Numer. Anal. 51(5), 2563–2584 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chen, Wenbin, Zhang, Yichao, Li, Weijia, Wang, Yanqiu, Yan, Yue: Optimal convergence analysis of a second order scheme for a thin film model without slope selection. J. Sci. Comput. 80(3), 1716–1730 (2019a)

    Article  MathSciNet  Google Scholar 

  5. Chen, Wenbin, Zhang, Yichao, Li, Weijia, Wang, Yanqiu, Yan, Yue: Optimal convergence analysis of a second order scheme for a thin film model without slope selection. J. Sci. Comput. 80(3), 1716–1730 (2019b)

    Article  MathSciNet  Google Scholar 

  6. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: M2AN 54(3), 727–750 (2020). https://doi.org/10.1051/m2an/2019054

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher-order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. (2020). https://doi.org/10.1007/s40687-020-00212-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019). https://doi.org/10.1016/j.cam.2018.05.039

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 1, 154–185 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cheng, K., Wang, C., Wise, S.M.: An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Commun. Comput. Phys. 26(5), 1335–1364 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cheng, M., James, A.W.: An efficient algorithm for solving the phase field crystal model. J. Comput. Phys. 227(12), 6241–6248 (2008). https://doi.org/10.1016/j.jcp.2008.03.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. 65(3), 851–1112 (1993)

  13. Diegel, A.E., Wang, C., Wise, S.M.: Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36(4), 1867–1897 (2015). https://doi.org/10.1093/imanum/drv065

    Article  MathSciNet  MATH  Google Scholar 

  14. Elsey, M., Wirth, B.: A simple and efficient scheme for phase field crystal simulation. ESAIM: M2AN 47(5), 1413–1432 (2013). https://doi.org/10.1051/m2an/2013074

    Article  MathSciNet  MATH  Google Scholar 

  15. Elsey, Matt, Wirth, Benedikt: A simple and efficient scheme for phase field crystal simulation. ESAIM Math. Model. Numer. Anal. 47(5), 1413–1432 (2013b)

    Article  MathSciNet  Google Scholar 

  16. Feng, Wenqiang, Wang, Cheng, Wise, Steven M., Zhang, Zhengru: A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Eq. 34(6), 1975–2007 (2018). https://doi.org/10.1002/num.22271

    Article  MathSciNet  MATH  Google Scholar 

  17. Girault, Vivette, Raviart, Pierre-Arnaud.: Finite Element Methods for Navier–Stokes equations. Springer, Berlin (1986)

    Book  Google Scholar 

  18. Gomez, Hector, Nogueira, Xesus: A new space-time discretization for the Swift–Hohenberg equation that strictly respects the Lyapunov functional. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4930–4946 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990). https://doi.org/10.1137/0727022

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228(15), 5323–5339 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hutt, A., Atay, F.M.: Analysis of nonlocal neural fields for both general and gamma-distributed connectivities. Physica D Nonlinear Phenomena 203(1–2), 30–54 (2005)

    Article  MathSciNet  Google Scholar 

  23. Hutt, Axel, Andre, Longtin, Lutz, Schimansky-Geier.: Additive noise-induced Turing transitions in spatial systems with application to neural fields and the Swift–Hohenberg equation. Physica D 237(6), 755–773 (2008). https://doi.org/10.1016/j.physd.2007.10.013

    Article  MathSciNet  MATH  Google Scholar 

  24. Ju, Lili, Li, Xiao, Qiao, Zhonghua, Zhang, Hui: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87(312), 1859–1885 (2017)

    Article  MathSciNet  Google Scholar 

  25. Keita, S., Beljadid, A.: and Bourgault, Y (2021) Efficient second-order semi-implicit finite element method for fourth-order nonlinear diffusion equations. Comput. Phys. Commun. 258, 107588 (2021). https://doi.org/10.1016/j.cpc.2020.107588

    Article  Google Scholar 

  26. Lee, Hyun Geun: A semi-analytical Fourier spectral method for the Swift–Hohenberg equation. Comput. Math. Appl. 74(8), 1885–1896 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lee, Hyun Geun: An energy stable method for the Swift–Hohenberg equation with quadratic-cubic nonlinearity. Comput. Methods Appl. Mech. Eng. 343(1), 40–51 (2019)

    Article  MathSciNet  Google Scholar 

  28. Lee, H.G.: A new conservative Swift–Hohenberg equation and its mass conservative method. J. Comput. Appl. Math. 375, 112815 (2020). https://doi.org/10.1016/j.cam.2020.112815

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Weijia, Chen, Wenbin, Wang, Cheng, Yan, Yue, He, Ruijian: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  Google Scholar 

  30. Li, Yibao, Kim, Junseok: An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation. Comput. Methods Appl. Mech. Eng. 319, 194–216 (2017). https://doi.org/10.1016/j.cma.2017.02.022

    Article  MathSciNet  MATH  Google Scholar 

  31. Mehdi, Dehghan, Vahid, Mohammadi: The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods. Comput. Methods Appl. Mech. Eng. 298, 453–484 (2016). https://doi.org/10.1016/j.cma.2015.09.018

    Article  MathSciNet  MATH  Google Scholar 

  32. Quarteroni, Alfio M. and Valli, Alberto. Numerical Approximation of Partial Differential Equations. Springer Publishing Company, Incorporated, 1st ed. 1994. 2nd printing edition, 2008

  33. Rosa, R.R., Pontes, J., Christov, C.I., Ramos, F.M., Neto, C.R., Rempel, E.L., Walgraef, D.: Gradient pattern analysis of Swift–Hohenberg dynamics: phase disorder characterization. Physica A-Stat. Mech. Appl. 283(1–2), 156–159 (2000)

    Article  Google Scholar 

  34. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A (DCDS-A) 28(4), 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  35. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012). https://doi.org/10.1137/110822839

    Article  MathSciNet  MATH  Google Scholar 

  36. Swift, J.B., Hohenberg, P.C.: Effects of additive noise at the onset of Rayleigh–Benard convection. Phys. Rev. A 46(8), 4773–4785 (1992)

    Article  Google Scholar 

  37. Thomee, Vidar: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1984)

    MATH  Google Scholar 

  38. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011). https://doi.org/10.1137/090752675

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, S., Chen, W., Pan, H., Wang, C.: Optimal rate convergence analysis of a second order scheme for a thin film model with slope selection. J. Comput. Appl. Math. 377, 112855 (2020)

    Article  MathSciNet  Google Scholar 

  40. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009). https://doi.org/10.1137/080738143

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Xiaofeng, Han, Daozhi: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zhai, S, Weng, Z, Feng, X, and He, Y. Stability and error estimate of the operator splitting method for the phase field crystal equation. J. Sci. Comput., 86(1), 2021

  43. Zhang, Zhengru, Ma, Yuanzi: On a large time-stepping method for the Swift–Hohenberg equation. Adv. Appl. Math. Mech. 8(6), 992–1003 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanren Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Subsidized by National Natural Science Foundation of China (NSFC) (Grant No.11971378).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Hou, Y. A Second Order Energy Stable BDF Numerical Scheme for the Swift–Hohenberg Equation. J Sci Comput 88, 74 (2021). https://doi.org/10.1007/s10915-021-01593-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01593-x

Keywords

Navigation