Skip to main content
Log in

Synthesis of highly swellable silver nanocomposite ionic double network (Ag-IDN) hydrogels and study of their characteristic properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nowadays, silver nanoparticle (AgNP)-embedded nanocomposite hydrogels are very attractive soft materials for biomedical applications. In this investigation, AgNPs were incorporated into ionic double network (IDN) hydrogels by in-situ reduction of AgNO3 using citric acid in the fully swollen hydrogels. The IDN hydrogels were pH-responsive multifunctional double network consisting of poly(vinyl alcohol)-borax as the first network and P(AM-co-NaAA) as the second network. The nanocomposite hydrogels were characterized by FTIR, XRD and TEM analyses. FTIR analysis revealed the successful incorporation of silver particles because of the observation of coordination of Ag + ions with the carboxylate (–COO) group of NaAA component present in the hydrogels. The characteristic presence of face-centered crystalline silver nanoparticles into the hydrogels was observed in X-ray diffractogram. The diameters of such AgNPs were observed to be in the range of 10–40 nm by TEM. These Ag-IDN nanocomposite hydrogels were further characterized for their swelling behavior and swelling kinetics as well as antibacterial property. The incorporation of AgNPs into the polymer network led to decrease of the swelling capacity of the hydrogels. The swelling characteristic constant (K) of the nanocomposite hydrogels was less than that of the virgin IDN hydrogels. Such Ag-IDN nanocomposite hydrogels exhibited antibacterial activity toward gram-positive and gram-negative bacteria. However, among the four nanocomposite hydrogels studied in this investigation, Ag-IDN-2 exhibited the best growth inhibition of Bacillus subtills (Gram + ve) whereas Ag-IDN-3 for Escherichia coli (Gram –ve) microorganisms. Such Ag-IDN nanocomposite hydrogels may find potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bag DS, Saxena AK (2014) Smart gels” in Kirk- Othmer encyclopedia of chemical technology. Wiley, USA, pp 1–50

    Book  Google Scholar 

  2. Bag DS, Rao KUB (2006) Smart polymers and their applications. J Polym Mater 23:225

    CAS  Google Scholar 

  3. Kelmanovich SG, Parke-Houben R, Frank CW (2012) Competitive swelling forces and interpolymer complexation in pH- and temperature-sensitive interpenetrating network hydrogels. Soft Mater 8:8137

    Article  CAS  Google Scholar 

  4. Doring A, Birnbaun W, Kuckling D (2013) Responsive hydrogels—structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 42:7391

    Article  PubMed  Google Scholar 

  5. Shen X, Zheng L, Tang R, Nie K, Wang Z, Jin C, Sun Q (2020) pH-Responsive hybrid jute carbon dot-cotton patch. ACS Sustain Chem Eng 8:7480

    Article  CAS  Google Scholar 

  6. Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919

    Article  CAS  Google Scholar 

  7. Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805

    Article  CAS  Google Scholar 

  8. Zhang JL, Huang WM, Gao G, Fu J, Zhou Y, Salvekar AV, Venkatraman SS, Wong YS, Tay KH, Birch WR (2014) Shape memory/change effect in a double network nanocomposite tough hydrogel. Eur Polym J 58:41

    Article  CAS  Google Scholar 

  9. Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26:5950

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki M, Karikkineth BC, Nagamine K, Kaji H, Torimitsu K, Nishizawa M (2014) Highly conductive stretchable and biocompatible electrode-hydrogel hybrids for advanced tissue engineering. Adv Healthcare Mater 3:1919

    Article  CAS  Google Scholar 

  11. Lin S, Cao C, Wang Q, Gonzalez M, Zhao X (2014) Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter 10:7519

    Article  CAS  PubMed  Google Scholar 

  12. Bag DS, Alam S (2012) Chiral chemical absorption property of a cross-linked poly(N-isopropyl acrylamide-co-sodium acrylate) thermoresponsive smart gel. Chirality 24:506–511

    Article  CAS  PubMed  Google Scholar 

  13. Katiyar R, Bag DS, Nigam I (2014) Synthesis and evaluation of swelling characteristics of fullerene (C60) containing cross-linked poly(2-hydroxyethyl methacrylate) hydrogels. Adv Mater Let 5:214

    Article  CAS  Google Scholar 

  14. Katiyar R, Bag DS, Nigam I (2013) Synthesis and evaluation of swelling characteristics of fullerene (C60) containing cross-linked poly(2-hydroxyethyl methacrylate) hydrogels. J Polym Mater 30:15

    CAS  Google Scholar 

  15. Dixit A, Bag DS, Kalra SJS (2017) Synthesis of strong and stretchable double network (DN) hydrogels of PVA-borax and P(AM-co-HEMA) and study of their swelling kinetics and mechanical properties. Polymer 119:263

    Article  CAS  Google Scholar 

  16. Dixit A, Bag DS, Singh H, Sharma DK, Prasad NE (2018) Effect of crosslinking on the network parameters, swelling and mechanical properties of PVA-Borax and poly (AM-co-HEMA) double network (DN) hydrogels. J Polym Mater 35:361

    Google Scholar 

  17. Dixit A, Bag DS, Sharma DK, Prasad NE (2019) Synthesis of multifunctional high strength, highly swellable, stretchable and self-healable pH-responsive ionic double network hydrogels. Polym Intl 68:503

    Article  CAS  Google Scholar 

  18. Dixit A, Kumar N, Bag DS, Agarwal K, Sharma DK, Prasad NE (2019) Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristic. Adv Mater Let 10:431–439

    Article  CAS  Google Scholar 

  19. Kalantari K, Mostafavi E, Afifi AM, Izadiyan Z, Jahangirian H, Rafiee-Moghaddama R, Webster TJ (2020) Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale 12:2268

    Article  CAS  PubMed  Google Scholar 

  20. Ghorbanloo M, Fallah HN (2020) Silver nanoparticle embedded anionic crosslinked copolymer hydrogels: an efficient catalyst. J Porous Mater 27:765

    Article  CAS  Google Scholar 

  21. Leeuwenburgh SCG, Jo J, Wang H, Yamamoto M, Jansen JA, Tabata Y (2010) Mineralization biodegradation, and drug release bahavior of gelatine/apatite composite microspheres for bone regeneration. Biomacromol 11:154

    Article  Google Scholar 

  22. Sophier J, Corre P, Weiss P, Layrolle P (2010) Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 6:2932

    Article  Google Scholar 

  23. Javed Khan MS, Khan SB, Kamal T, Asiri AM (2020) Catalytic application of silver nanoparticles in chitosan hydrogel prepared by a facile method. J Polym ment 28:962

    Google Scholar 

  24. Li H, Xin HL, Muller DA, Estroff LA (2020) Self-assembled supramolecular hybrid hydrogel beads loaded with silver nanoparticles for antimicrobial applications. Chemistry 28:8452

    Google Scholar 

  25. Mao C, Xiang Y, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wang X, Chu PK, Wu S (2017) Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano 11:9010

    Article  CAS  PubMed  Google Scholar 

  26. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583

    Article  CAS  Google Scholar 

  27. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727

    Article  CAS  PubMed  Google Scholar 

  28. Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Zhao J, Himly M, Riediker M, Oostingh GJ et al (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnol 13:1

    Article  Google Scholar 

  29. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010

    Article  Google Scholar 

  30. Thomas V, Namdeo M, Mohan YM, Bajpai SK, Bajpai M (2008) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci Pure Appl Chem 45:107

    Article  Google Scholar 

  31. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441

    Article  CAS  PubMed  Google Scholar 

  32. Xu S, Deng L, Zhang J, Yin L, Dong A (2015) Composites of electrospun‐fibers and hydrogels: a potential solution to current challenges in biological and biomedical field. J Biomed Mater Res B 104(3):640

    Article  Google Scholar 

  33. Peniche C, Cohen ME, Vazquez B, Roman JS (1997) Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers. Polymer 38:5977

    Article  CAS  Google Scholar 

  34. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71

    Article  PubMed  Google Scholar 

  35. Saraydinetal D (1992) Influence of some amino acids on the dynamic swelling behavior of radiation-induced acrylamide hydrogel. Appl Bio Biotechnol 82:115

    Article  Google Scholar 

  36. Han H, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306

    Article  CAS  PubMed  Google Scholar 

  37. Spoljaric S, Salminen A, Luong ND, Seppälä J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105

    Article  CAS  Google Scholar 

  38. Bag DS, Alam S, Mathur GN (2004) Terpolymer smart gels: synthesis and characterization. Smart Mater Struct 13:1258

    Article  CAS  Google Scholar 

  39. Murthy P, Murali Mohan Y, Varaprasad K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318:217

    Article  CAS  PubMed  Google Scholar 

  40. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerf 108:255

    Article  CAS  Google Scholar 

  41. Agnihotri S, Mukherji S, Mukherji S (2012) Dielectric properties of cadmium selenide (CdSe) nanoparticles synthesized by solvothermal method. Appl. Nanosci. 2:179

    Article  CAS  Google Scholar 

  42. Aggor FS, Ahmed EM, El-Aref AT, Asem MA (2010) Synthesis and characterization of poly (acrylamide-co-acrylic acid) hydrogel containing silver nanoparticles for antimicrobial applications. J Am Sci 6:648

    Google Scholar 

  43. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X (2018) Antibacterial hydrogels. Adv Sci 5:1700527

    Article  Google Scholar 

  44. Morones JR, Elechiguerra JL, Camacho A, Holt A, Kouri JB, Ramírez JP, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  PubMed  Google Scholar 

  45. Eid M, El-Arnaouty MB, Salah M, Soliman ES, Hegazy ESA (2012) Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res 19:9835

    Article  Google Scholar 

  46. Wu J, Hou S, Ren D, Mather PT (2009) Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromol 10:2686

    Article  CAS  Google Scholar 

  47. Wei QB, Fu F, Zhang YQ, Tang L (2014) Preparation, characterization, and antibacterial properties of pH-responsive P(MMA-co-MAA)/silver nanocomposite hydrogels. J Polym Res 21:349

    Article  Google Scholar 

  48. Jaiswal M, Koul V, Dinda AK (2016) In vitro and in vivo investigational studies of a nanocomposite-hydrogel-based dressing with a silver-coated chitosan wafer for full-thickness skin wounds. J Appl Polym Sci 133:43472

    Article  Google Scholar 

  49. Diniz FR, Maia RCAP, Andrade LR, Andrade LN, Chaud MV et al (2020) An eco-friendly synthesis, characterization and antibacterial applications of novel almond gum—poly(acrylamide) based hydrogel silver nanocomposite. Nanomaterials 10:390

    Article  CAS  PubMed Central  Google Scholar 

  50. Kedziora A, Speruda M, Krzyzewska E, Rybka J, Łukowiak A, Bugla-Płosko G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akansha Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Dixit, A. & Bag, D.S. Synthesis of highly swellable silver nanocomposite ionic double network (Ag-IDN) hydrogels and study of their characteristic properties. Polym. Bull. 79, 6759–6776 (2022). https://doi.org/10.1007/s00289-021-03816-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03816-5

Keywords

Navigation