Skip to main content
Log in

Kinetics of Grain Growth upon the Heating of Nickel Deformed by High-Pressure Torsion

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Scanning electron microscopy has been used to study recrystallization processes during the annealing (to 16 h) of nickel with cellular, mixed, and submicrocrystalline structures formed by high-pressure torsion deformation. Annealing in a temperature range of 200–350°C failed to produce a recrystallized structure with an average grain size of smaller than 1 μm. The smallest recrystallized grain size was found in the submicrocrystalline (SMC) nickel structure after annealing at 300°С. The SMC structure was formed via deformation to e = 9. The kinetics of normal grain growth was not implemented during the annealing of SMC nickel. The nonmonotonic size dependences of recrystallized grain on the temperature and annealing time in the SMC nickel are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Lu, “Stabilizing nanostructures in metals using grain and twin boundary architectures,” Nat. Rev. Mater. 1, 16019 (2016).

    Article  CAS  Google Scholar 

  2. V. V. Popov and E. N. Popova, “Behavior of Nb and Cu–Nb composites under severe plastic deformation and annealing,” Mater. Trans. 60, No. 7, 1209–1220 (2019).

    Article  CAS  Google Scholar 

  3. V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, and V. P. Pilyugin, “Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 115, 727–736 (2014).

    CAS  Google Scholar 

  4. J. Gubicza, N. Q. Chinh, S. V. Dobatkin, E. Khosravi, and T. G. Langdon, “Stability of ultrafine-grained microstructure in FCC metals processed by severe plastic deformation,” Key Eng. Mater. 465, 195–198 (2011).

    Article  CAS  Google Scholar 

  5. X. Zhou, X. Y. Li, and K. Lu, “Enhanced thermal stability of nanograined metals below a critical grain size,” Science 360, 526–530 (2018).

    Article  CAS  Google Scholar 

  6. R. A. Andrievskii, “Thermal stability of nanomaterials,” Russ. Chem. Rev. 71, No. 10, 853–866 (2002).

    Article  CAS  Google Scholar 

  7. M. V. Degtyarev, T. I. Chashchukhina, and L. M. Voro-nova, “Thermal stability of a submicrocrystalline structure of metals and alloys,” Phys. Met. Metallogr. 119, No. 13, 1329–1332 (2018).

    Article  CAS  Google Scholar 

  8. V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, and M. Yu. Gryaznov, “Recrystallization in microcrystalline copper and nickel produced by equal-channel angular pressing: III. Abnormal grain growth: A model,” Phys. Met. Metallogr. 97, No. 1, 1–6 (2004).

    Google Scholar 

  9. A. N. Aleshin, “Kinetic constants of abnormal grain growth in nanocrystalline nickel,” Phys. Solid State 58, 413–420 (2016).

    Article  CAS  Google Scholar 

  10. M. V. Degtyarev, L. M. Voronova, V. V. Gubernatorov, and T. I. Chashchukhina, “On the thermal stability of the microcrystalline structure in single-phase metallic materials,” Dokl. Phys. 47, 647–650 (2002).

    Article  CAS  Google Scholar 

  11. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104, No. 3, 262–273 (2007).

    Article  Google Scholar 

  12. W. Xue, L. Ping, and X. Kemin, “Strain effect on grain refinement and thermal stability of ultrafinegrained molybdenum processed by severe plastic deformation,” Proc. Manuf. 15, 1487–1494 (2018).

    Google Scholar 

  13. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, No. 1, 79–86 (2015).

    Article  Google Scholar 

  14. L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, Yu. G. Krasnoperova, and N. N. Resnina, “Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing,” Mater. Sci. Eng., A 639, 155–164 (2015).

    Article  CAS  Google Scholar 

  15. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, and M. V. Degtyarev, “Features of low-temperature recrystallization of nickel and copper,” Fiz. Met. Metalloved. 62, 566–570 (1986).

    CAS  Google Scholar 

  16. S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  17. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization kinetics of niobium with submicrocrystalline structure,” Phys. Met. Metallogr. 120, No. 10, 949–955 (2019).

    Article  CAS  Google Scholar 

  18. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation,” Acta Mater. 55, 6039–6050 (2007).

    Article  CAS  Google Scholar 

  19. R. K. Islamgaliev, F. Chmelik, and R. Kuzel, “Thermal structure changes in copper and nickel processed by severe plastic deformation,” Mater. Sci. Eng., A 234–236, 335–338 (1997).

    Article  Google Scholar 

  20. F. J. Humphreys, “Review grain and subgrain characterisation by electron backscatter diffraction,” J. Mater. Sci. 36, 3833–3854 (2001).

    Article  CAS  Google Scholar 

  21. N. A. Saltykov, Quantitative Metallography (Metallurgiya, Moscow, 1970).

    Google Scholar 

  22. V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  23. Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, No. 3, 267–274 (2016).

    Article  CAS  Google Scholar 

  24. M. Degtyarev, T. Chashchukhina, L. Voronova, T. Gapontseva, and V. Levit, “Evolution of microstructure and microtexture upon recrystallization of submicrocrystalline niobium,” Int. J. Ref. Metals & Hard Mater. 86, 105117 (2020).

  25. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Low-temperature recrystallization of submicrocrystalline structure of armco iron and 30G2R steel,” Phys. Met. Metallogr. 98, No. 1, 83–91 (2004).

    Google Scholar 

  26. V. N. Perevezentsev, A. S. Pupynin, and A. E. Ogorodnikov, “Investigation of the evolution of diffusion properties of nonequilibrium grain boundaries upon annealing of submicrocrystalline materials,” Lett. Mater. 9, No. 1, 107–112 (2019).

    Article  Google Scholar 

  27. H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra‑high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010).

    Article  CAS  Google Scholar 

  28. E. A. Korznikova, S. Yu. Mironov, A. V. Korznikov, A. P. Zhilyaev, and T. G. Langdon, “Microstructural evolution and electro-resistivity in HPT nickel,” Mater. Sci. Eng., A 556, 437–445 (2012).

    Article  CAS  Google Scholar 

  29. P. P. Bhattacharjee, M. Joshi, V. P. Chaudhary, J. R. Gatti, and M. Zaid, “Texture evolution during cross rolling and annealing of high-purity nickel,” Metall. Mater. Trans. A 44, 2707–2716 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank N.V. Nikolaeva and V.P. Pilyugin for their assistance in performing the experiments.

Funding

This work was performed within the state assignment (theme “Pressure” No. АААА-А18-118020190104-3). The electron-microscope studies were performed at the Test Center of Nanotechnologies and Advanced Materials Center of the Collaborative Use, Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Voronova.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, L.M., Degtyarev, M.V. & Chashchukhina, T.I. Kinetics of Grain Growth upon the Heating of Nickel Deformed by High-Pressure Torsion. Phys. Metals Metallogr. 122, 559–565 (2021). https://doi.org/10.1134/S0031918X21060120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21060120

Keywords:

Navigation