Skip to main content
Log in

Enhancement of the Coercive Force of Sm2Fe17N3 Powders via Surfactant Added Mechanical Milling

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the mechanical milling of Sm2Fe17N3 nitride in a vibratory mill, in particular, the effect of the powder-to-ball mass ratio (m), milling time (tmill), milling medium, and concentration of added surfactants, has been systematically studied in order to determine optimum parameters for the high level of hysteresis properties of the magnetically anisotropic powder. It is shown that, as m increases from 15 to 50, the increase in the coercivity Hc of the powder at the beginning milling stages (tmill ≤ 4 h) is substantially accelerated; in this case, about 80% particles are less than 1 µm in size. As the milling time increases (tmill > 4 h), the coercivity continues to increase. However, the specific residual magnetization σr and maximum energy product (BH)max begin to decrease because of the developed process of particle agglomeration, which results in a deterioration of the powder allignment. The addition of a surfactant to the protective medium markedly intensifies the milling process and accelerates the kinetics of the increase of Hc at the beginning milling stages at m = 15. The best complex of magnetic hysteresis properties, σr ≥ 135 emu/g, Hc, ≥ 8 kOe, and (BH)max ≥ 18 MG Oe, is observed for powders milled in 5% solution of oleic acid in acetone, 5% solution of capronic acid in toluene, and 1% solution of methyl caproate in toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Suzuki, T. Miura, and M. Kawasaki, “Sm2Fe17Nx bonded magnets with high performance,” IEEE Trans. Magn. 29, No. 6, 2815–2817 (1993).

    Article  CAS  Google Scholar 

  2. K. Makita and S. Hirosawa, “Coercivity of Zn evaporation-coated Sm2Fe17Nx fine powder and its bonded magnets,” J. Alloys Compd. 260, Nos. 1–2, 236–241 (1997).

    Article  CAS  Google Scholar 

  3. W. Yamaguchi, R. Soda, and K. Takagi, “Metal-coated Sm2Fe17N3 magnet powders with an oxide-free direct metal-metal interface,” J. Magn. Magn. Mater. 498, 166101 (2020).

    Article  CAS  Google Scholar 

  4. Y. Otani, A. Moukarika, H. Sun, J. M. D. Coey, E. Devlin, and I. R. Harris, “Metal bonded Sm2Fe17N3 – δ magnets,” J. Appl. Phys. 69, No. 9, 6735–6737 (1991).

    Article  CAS  Google Scholar 

  5. W. Rodewald, B. Wall, M. Katter, M. Velicescu, and P. Schrey, “Microstructure and magnetic properties of Zn- or Sn-bonded Sm2Fe17Nx magnets,” J. Appl. Phys. 73, No. 10, 5899–5901 (1993).

    Article  CAS  Google Scholar 

  6. M. Matsuura, T. Shiraiwa, N. Tezuka, S. Sugimoto, T. Shoji, N. Sakuma, and K. Haga, “High coercive Zn-bonded Sm–Fe–N magnets prepared using fine Zn particles with low oxygen content,” J. Magn. Magn. Mater. 452, 243–248 (2018).

    Article  CAS  Google Scholar 

  7. M. Tokita, “Trends in advanced SPS spark plasma sintering systems and technology,” J. Soc. Powder Technol. Jpn. 30, No. 11, 790–804 (1993).

    Article  CAS  Google Scholar 

  8. T. Saito, “Production of Sm–Fe–N bulk magnets by spark plasma sintering method,” J. Magn. Magn. Mater. 369, 184–188 (2014).

    Article  CAS  Google Scholar 

  9. D. Zhang, M. Yue, and J. Zhang, “Structure and magnetic properties of Sm2Fel7Nx sintering magnets prepared by spark plasma sintering,” J. Rare Earths. 24, 325–328 (2006).

    Article  Google Scholar 

  10. T. Saito, “Structures and magnetic properties of Sm–Fe–N bulk magnets produced by the spark plasma sintering method,” J. Mater. Res. 22, No. 11, 3130–3136 (2007).

    Article  CAS  Google Scholar 

  11. K. Takagi, H. Nakayama, and K. Ozaki, “Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering,” J. Magn. Magn. Mater. 324, No. 15, 2336–2341 (2012).

    Article  CAS  Google Scholar 

  12. D. Prabhu, H. Sepehri-Amin, C. L. Mendis, T. Ohkubo, K. Hono, and S. Sugimoto, “Enhanced coercivity of spark plasma sintered Zn-bonded Sm–Fe–N magnets,” Scr. Mater. 67, No. 2, 153–156 (2012).

    Article  CAS  Google Scholar 

  13. D. V. Dudina and A. K. Mukherjee, “Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis,” J. Nanomater. 11, 625218 (2013).

    Google Scholar 

  14. T. Saito, T. Deguchi, and H. Yamamoto, “Magnetic properties of Sm–Fe–N bulk magnets produced from Cu-plated Sm–Fe–N powder,” AIP Adv. 7, 056204 (2017).

    Article  Google Scholar 

  15. A. Kawamoto, T. Ishikawa, S. Yasuda, K. Takeya, K. Ishizaka, T. Iseki, and K. Ohmori, “Sm2Fe17N3 magnet powder made by reduction and diffusion method,” IEEE Trans. Magn. 35, 3322–3324 (1999).

    Article  CAS  Google Scholar 

  16. J. Lee, S. Kang, P. Si, and C. Choi, “The influence of mechanical milling on the structure and magnetic properties of Sm–Fe–N powder Produced by the reduction-diffusion process,” J. Magn. 16, No. 2, 104–107 (2011).

    Article  Google Scholar 

  17. S. Okada, K. Suzuki, E. Node, K. Takagi, K. Ozaki, and Y. Enokido, “Preparation of submicron-sized Sm2Fe17N3 fine powder with high coercivity by reduction-diffusion process,” J. Alloys Compd. 695, 1617–1623 (2017).

    Article  CAS  Google Scholar 

  18. S. Okada, K. Suzuki, E. Node, K. Takagi, K. Ozaki, and Y. Enokido, “Improvement of magnetization of submicron-sized high coercivity Sm2Fe17N3 powder by using hydrothermally synthesized sintering-tolerant cubic hematite,” AIP Adv. 7, 056219 (2017).

    Article  Google Scholar 

  19. P. A. P. Wendhausen, B. Gebel, D. Eckert, and K.‑H. Müller, “Effect of milling on the magnetic and microstructural properties of Sm2Fe17Nx permanent magnets,” J. Appl. Phys. 75, No. 10, 6018–6020 (1994).

    Article  CAS  Google Scholar 

  20. K. Kobayashi, R. Skomski, and J. M. D. Coey, “Dependence of coercivity on particle size in Sm2Fe17N3 powders,” J. Alloys Compd. 222, Nos. 1–2, 1–7 (1995).

    Article  CAS  Google Scholar 

  21. J. L. Wang, W. Z. Li, X. P. Zhong, Y. H. Gao, W. D. Qin, N. Tang, W. G. Lin, J. X. Zhang, R. W. Zhao, Q. W. Yan, and F.-m. Yang, “Study on high performance Sm2Fe17Nx magnets,” J. Alloys Compd. 222, Nos. 1–2, 23–26 (1995).

    Article  CAS  Google Scholar 

  22. M. Xing, J. Han, F. Wan, S. Liu, C. Wang, J. Yang, and Y. Yang, “Preparation of anisotropic magnetic materials by strip casting technique,” IEEE Trans. Magn. 49, No. 7, 3248–3250 (2013).

    Article  CAS  Google Scholar 

  23. T. Mukai and T. Fujimoto, “Kerr microscopy observation of nitrogenated Sm2Fe17 intermetallic compounds,” J. Magn. Magn. Mater. 103, Nos. 1–2, 165–173 (1992).

    Article  CAS  Google Scholar 

  24. V. M. Chakka, B. Altuncevahir, Z. Q. Jin, Y. Li, and J. P. Liu, “Magnetic nanoparticles produced by surfactant-assisted ball milling,” J. Appl. Phys. 99, No. 8. 08E912 (2006).

  25. M. Yue, Y. P. Wang, N. Poudyal, C. B. Rong, and J. P. Liu, “Preparation of Nd–Fe–B nanoparticles by surfactant-assisted ball milling technique,” J. Appl. Phys. 105, No. 7. 07A708 (2009).

  26. N. Poudyal, C. Rong, and J. P. Liu, “Effects of particle size and composition on coercivity of Sm–Co nanoparticles prepared by surfactant-assisted ball milling,” J. Appl. Phys. 107, No. 9. 09A703 (2010).

  27. C. A. Crouse, E. Michel, Y. Shen, S. J. Knutson, B. K. Hardenstein, J. E. Spowart, S. O. Leontsev, S. L. Semiatin, J. Horwath, Z. Turgut, and M. S. Lucas, “Effect of surfactant molecular weight on particle morphology of SmCo5 prepared by high energy ball milling,” J. Appl. Phys. 111, No. 7. 07A724 (2012).

  28. L. Zhao, N. G. Akdogan, and G. C. Hadjipanayis, “Hard magnetic Sm2Fe17N3 flakes nitrogenized at lower temperature,” J. Alloys Compd. 554, 147–149 (2013).

    Article  CAS  Google Scholar 

  29. M. Ullah, Md. E. Ali, and Sh. B. A. Hamid, “Surfactant-assisted ball milling: a novel route to novel materials with controlled nanostructure—A review,” Rev. Adv. Mater. Sci. 37, 1–14 (2014).

    CAS  Google Scholar 

  30. P. A. Rebinder and E. D. Shchukin, “Surface phenomena in solids in the processes of their deformation and destruction,” Usp. Fiz. Nauk 108, No. 1, 3–42 (1972).

    Article  CAS  Google Scholar 

  31. X. B. Ma, L. Z. Li, S. Q. Liu, B. Y. Hu, J. Z. Han, C. S. Wang, H. L. Du, Y. C. Yang, and J. B. Yang, ”Anisotropic Sm–Fe–N particles prepared by surfactant-assisted grinding method,” J. Alloys Compd. 612, 110–113 (2014).

    Article  CAS  Google Scholar 

  32. M. Yue, Y. Q. Li, R. M. Liu, W. Q. Liu, Z. H. Guo, and W. Li, “Abnormal size-dependent coercivity in ternary Sm–Fe–N nanoparticles,” J. Alloys Compd. 637, 297–300 (2015).

    Article  CAS  Google Scholar 

  33. C. Lu, X. Hong, X. Bao, X. Gao, and J. Zhu, “Changing phase equilibria: A method for microstructure optimization and properties improvement in preparing anisotropic Sm2Fe17N3 powders,” J. Alloys Compd. 784, 980–989 (2019).

    Article  CAS  Google Scholar 

  34. Y. Li, F. Wang, J. P. Liu, F. Wang, S. Wang, and J. Zhang, “Fabrication of remarkably magnetic-property-enhanced anisotropic Sm2Fe17Nx nanoflakes by surfactant assisted ball milling at low temperature,” J. Magn. Magn. Mater. 498, 166191 (2020).

    Article  CAS  Google Scholar 

  35. D. A. Kolodkin, A. G. Popov, A. V. Protasov, V. S. Gaviko, D. Yu. Vasilenko, S. Kavita, D. Prabhu, and R. Gopalan, “Magnetic properties of Sm2 + αFe17Nx powders prepared from bulk and strip-cast alloys,” J. Magn. Magn. Mater. 518, 167416 (2021).

    Article  CAS  Google Scholar 

  36. A. P. Menushenkov, A. G. Savchenko, V. G. Ivanov, A. A. Ivanov, I. V. Shchetinin, V. P. Menushenkov, I. A. Rudnev, A. V. Rafal’skii, D. G. Zhukov, M. Platunov, F. Vilkhel’m, and A. Rogalev, ”Effect of nitrogenation and hydrogenation on the magnetic properties and structure of the Sm2Fe17 alloy: Analysis of xmcd data,” JETP Lett. 107, No. 4, 228–232 (2018).

    Article  CAS  Google Scholar 

  37. I. V. Shchetinin, I. G. Bordyuzhin, R. V. Sundeev, V. P. Menushenkov, A. V. Kamynin, V. N. Verbetsky, and A. G. Savchenko, “Structure and magnetic properties of Sm2Fe17Nx alloys after severe plastic deformation by high pressure torsion,” Mater. Lett. 274. 127993 (2020).

    Article  CAS  Google Scholar 

  38. A. G. Popov, V. S. Gaviko, N. N. Shchegoleva, O. A. Golovnia, T. I. Gorbunova, and G. C. Hadjipanayis, “Effect of addition of esters of fatty acids on the microstructure and properties of sintered Nd–Fe–B magnets produced by PLP,” J. Magn. Magn. Mater. 386, 134–140 (2015).

    Article  CAS  Google Scholar 

  39. V. P. Tarasov, A. S. Ignatov, and D. A. Kutepov, “Development of methods for enhancing the corrosion resistance of Sm2Fe17N3 hard magnetic materials,” Metallurg, No. 11, 74–76 (2016).

    Google Scholar 

  40. A. V. Kutepov, V. P. Tarasov, and A. S. Ignatov, “Optimization of nitriding condition of Sm2Fe17 alloys powders,” Metallurg, No. 12, 59–62 (2016).

    Google Scholar 

Download references

Funding

This study was performed in terms of a state assignment of the Ministry of Science and Higher Education (theme Magnit, no. АААА-А18-118020290129-5). The X-ray diffraction studies and measurements of magnetic properties were carried out at the Center for Collective Use of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kolodkin.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolodkin, D.A., Popov, A.G. & Gaviko, V.S. Enhancement of the Coercive Force of Sm2Fe17N3 Powders via Surfactant Added Mechanical Milling. Phys. Metals Metallogr. 122, 547–558 (2021). https://doi.org/10.1134/S0031918X21060053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21060053

Keywords:

Navigation