Skip to main content
Log in

Optical and Dielectric Properties of Plasmonic Core–Shell Nanoparticles: Fe2O3/Au and Fe3O4/Au

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The optical and dielectric properties of plasmonic of Fe2O3/Au and Fe3O4/Au core/shell nanoparticles were studied using Finite Element computational approach. The optical response of these nanostructures was investigated through the computation of the real and the imaginary parts of the effective dielectric permittivity and the absorption cross-section in the visible-near infrared spectral range. Our findings are as follows. Firstly, we have compared our obtained numerical results with those predicted by Maxwell–Garnett effective medium theory. Secondly, the obtained results reveal that the localized surface plasmons resonance (LSPR) peak shifts to near infrared for a Fe2O3/Au-nanoparticle are similar to that of a Fe3O4/Au-nanoparticle having the same geometric parameters. Thirdly, the optical characteristics of the plasmonic nanoparticles were also studied. Finally, we hope that the developed numerical method can be extended to investigate the electromagnetic coupling within or between particles and its effect on the plasmonic behaviors. This makes the core/shell composite nanoparticles extremely interesting for magnetic, optical and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

References

  1. Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed (2001). Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256–261.

    Article  Google Scholar 

  2. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, and B. Von Rechenberg (2005). Superparamagnetic nanopartcles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496.

    Article  CAS  Google Scholar 

  3. P. Tartaj, M. P. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, and C. J. Serna (2005). Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 290, 28–34.

    Article  Google Scholar 

  4. A. Wu, P. Ou, and L. Zeng (2010). Biomedical applications of magnetic nanoparticles. Nano. 5, 245–270.

    Article  CAS  Google Scholar 

  5. D. Caruntu, B. L. Cushing, G. Caruntu, and C. J. O. Connor (2005). Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem. Mater. 17 (13), 3398–3402.

    Article  CAS  Google Scholar 

  6. Z. Liao, H. Wang, R. Lv, P. Zhao, X. Sun, S. Wang, W. Su, R. Niu, and J. Chang (2011). Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir. 27, 3100–3105.

    Article  CAS  Google Scholar 

  7. J. Xie, S. Lee, and X. Chen (2010). Nanoparticle-based theranostic agents. Adv. Drug. Delivery Rev. 62, 1064–1079.

    Article  CAS  Google Scholar 

  8. G. Armelles, A. Cebollada, A. Garcia-Martin, and M. U. Gonzalez (2013). Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35.

    Article  Google Scholar 

  9. S. Link and M. A. El-Sayed (1999). Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B. 103, 8410–8426.

    Article  CAS  Google Scholar 

  10. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney (2002). Drastic reduction of plasmon damping in gold nanorods. Phys. ReV. Lett. 88, 77402–77406.

    Article  CAS  Google Scholar 

  11. F. Hubenthal, T. Ziegler, C. Hendrich, M. Alschinger, and F. Trager (2005). Tuning the surface plasmon resonance by preparation of gold-core/silver-shell and alloy nanoparticles. Eur. Phys. J. D. 34, 165–168.

    Article  CAS  Google Scholar 

  12. N. Félidj, S. Lau Truong, J. Aubard, and G. Lévi (2004). Gold particle interaction in regular arrays probed by surface enhanced raman scattering. J. Chem. Phys. 120, 7141–7146.

    Article  Google Scholar 

  13. B. T. Draine and P. J. J. Flatau (1994). Discrete-dipole approximation for periodic targets: theory and tests. Opt. Soc. Am. A. 11, 1491–1499.

    Article  Google Scholar 

  14. W. Brullot, V. K. Valev, and T. Verbiest (2012). Magnetic-plasmonic nanoparticles for the life sciences: Calculated optical properties of hybrid structures. Nanomedicine. 8, 559–568.

    Article  CAS  Google Scholar 

  15. A. Akouibaa, A. Derouiche, and H. Redouane (2014). Numerical study of the effects of polymeric shell on plasmonic resonance of gold nanorods. I.I.J. Comput. Mater. Sci. 3, 1450024.

    CAS  Google Scholar 

  16. N. Ahmadi, R. Poursalehi, and M. K. M. Farshi (2015). The Interparticle coupling effect on plasmon resonance properties of magnetite@Au magnetoplasmonic nanoparticles. Procedia Mater. Scie. 11, 254–258.

    Article  CAS  Google Scholar 

  17. L. Bahmad, A. Benyoussef, and H. Ez-Zahraouy (2003). Surface coupling effect on wetting and layering transitions. Surf. Sci. 536, 114–120.

    Article  CAS  Google Scholar 

  18. S. Idrissi, S. Ziti, H. Labrim, and L. Bahmad (2021). Half-metallic behavior and magnetic proprieties of the quaternary Heusler alloys YFeCrZ (Z= Al, Sb and Sn). Mater. Sci. Semicond. Proc. 122, 105484.

    Article  CAS  Google Scholar 

  19. S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad (2020). Structural, electronic, magnetic properties and critical behavior of the equiatomic quaternary Heusler alloy CoFeTiSn. Phys. Lett. A 384, 126453–126406.

    Article  CAS  Google Scholar 

  20. S. Idrissi, H. Labrim, L. Bahmad, and A. Benyoussef (2021). DFT and TDDFT studies of the new inorganic perovskite CsPbI3 for solar cell applications. Chem. Phys. Lett. 766, 138347–138353.

    Article  CAS  Google Scholar 

  21. S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad (2020). The critical magnetic behavior of the new Heusler CoXO2 alloys (X=Cu or Mn): Monte Carlo Study. J. Supercond. Nov. Magn. 33, 3087–3095.

    Article  Google Scholar 

  22. S. Idrissi, H. Labrim, S. Ziti, and L. Bahmad (2020). Critical magnetic behavior of the rare earth-based alloy GdN: Monte Carlo simulations and density functional theory method. J. Mater. Eng. Perform. 29, 7361–7368.

    Article  CAS  Google Scholar 

  23. N. Zayyoun, L. Bahmad, L. Laânab, and B. Jaber (2016). The effect of pH on the synthesis of stable Cu2O/CuO nanoparticles by sol–gel method in a glycolic medium. Appl. Phys. A 122, 488–494.

    Article  Google Scholar 

  24. P. G. Etchegoin, E. C. Le Ru, and M. Meyer (2007). An analytic model for the optical properties of gold. J. Chem. Phys. 127, 189901–189904.

    Article  Google Scholar 

  25. A. Vial and T. Laroche (2008). Comparison of gold and silver dispersion laws suitable for FDTD simulations. Appl. Phys. B 93, 139–143.

    Article  CAS  Google Scholar 

  26. M.R. Querry, Optical Constants, Missouri Univ-Kansas City, (1985).

  27. V. Myroshnychenko and C. Brosseau (2005). Finite-element method for calculation of the effective permittivity of random inhomogeneous media. Phys. Rev. E 71, 016701–016717.

    Article  Google Scholar 

  28. N. Jebbor and S. Bri (2012). Effective permittivity of periodic materials: Numerical modeling by the finite element method. J. of Electrostatics 70, 393–399.

    Article  Google Scholar 

  29. B. Sareni, L. Krähenbühl, A. Beroual, and C. Brosseau (1996). Effective dielectric constant of periodic composite materials. J. Appl. Phys. 80, 1688–1696.

    Article  CAS  Google Scholar 

  30. J. N. Reddy, An Introduction to Finite Element Method, 2nd ed. (Mc Graw Hill, New York, 1993).

    Google Scholar 

  31. G. Weick, R. A. Molina, D. Weinmann, and R. A. Jalabert (2005). Lifetime of the first and second collective excitations in metallic nanoparticles. Phys. Rev. B 72, 115410–115427.

    Article  Google Scholar 

  32. E. D. Palik, Handbook of Optical Constants of Solids III (Academic Press, New York, 1991).

    Google Scholar 

  33. Zh. Xu, Y. Hou, and S. Sun (2007). Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. AM. Chem. Soc. 129, 8698–8699.

    Article  CAS  Google Scholar 

  34. E. Kheradmand, R. Poursalehi, and H. Delavari (2020). Appl. Nanosci. 10, 1083–1094.

    Article  CAS  Google Scholar 

  35. J. A. Creighton and D. G. Eadon (1991). Ultraviolet–visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday. Trans. 87 (24), 3881–3891.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akouibaa, A., Masrour, R., Jabar, A. et al. Optical and Dielectric Properties of Plasmonic Core–Shell Nanoparticles: Fe2O3/Au and Fe3O4/Au. J Clust Sci 33, 2139–2146 (2022). https://doi.org/10.1007/s10876-021-02133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02133-1

Keywords

Navigation