Skip to main content
Log in

Assembly of Three New Co2/Mn5/Co5-Cluster-Based Metal–Organic Frameworks: Syntheses, Structure, Thermal Stability and Magnetic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Three new metal–organic coordination polymers, {[Co2(TDC)2(H-3,3′-pytz)22-OH)]·4DMF}n (1), [Mn5(NDC)4(3,3′-pytz)(DMF)43-OH)2]n (2), [Co5(NDC)4(3,3′-pytz)(DMF)43-OH)2]n (3). (3,3′-pytz = 3,6-bis(3-pyridyl)-1,2,4,5-tetrazine; H-3,3′-pytz = protonated 3,6-bis(3-pyridyl)-1,2,4,5-tetrazine; H2TDC = 2,5-Thiophenedicarboxylic acid; H2NDC = 1,4-naphthalenedicarboxylic acid) were synthesized under hydro-/solvothermal conditions and characterized by techniques of single-crystal X-ray diffraction analysis, elemental analysis, infrared spectra (IR) and thermogravimetric analysis (TGA). The resulting analyses demonstrate that complex 1 displays a rare 3D 8-connected bcu framework with the point symbol of {424·64} based on dinuclear [Co22-OH)(COO)4] cluster, while complex 2 and 3 possessed a rare 3D 10-connected pentanuclear-cluster-based ile{36·434·53·62}framework. The variable-temperature magnetic susceptibility data show that the complex 1, 2 and 3 exhibit antiferromagnetic interaction.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. C. Zhou, J. R. Long, and O. M. Yaghi (2012). Chem. Rev. 112, 673.

    Article  CAS  PubMed  Google Scholar 

  2. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, and H. C. Zhou (2018). Adv. Mater. 30, e1704303.

    Article  PubMed  CAS  Google Scholar 

  3. H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi (2013). Science 341, 1230444.

    Article  PubMed  CAS  Google Scholar 

  4. N. Heidary, M. Morency, D. Chartrand, K. H. Ly, R. Iftimie, and N. Kornienko (2020). J. Am. Chem. Soc. 142, 12382.

    Article  CAS  PubMed  Google Scholar 

  5. K. B. Wang, Q. Xun, and Q. Zhang (2020). EnergyChem 2, 100025.

    Article  CAS  Google Scholar 

  6. K. Wang, B. Lv, Z. Wang, H. Wu, J. Xu, and Q. Zhang (2020). Dalton Trans. 49, 411.

    Article  CAS  PubMed  Google Scholar 

  7. Y. P. Li, Y. Wang, Y. Y. Xue, H. P. Li, Q. G. Zhai, S. N. Li, Y. C. Jiang, M. C. Hu, and X. Bu (2019). Angew. Chem. Int. Ed. 58, 13590.

    Article  CAS  Google Scholar 

  8. D. J. Babu, G. He, L. F. Villalobos, and K. V. Agrawal (2018). ACS Sustain. Chem. Eng. 7, 49.

    Article  CAS  Google Scholar 

  9. D. Liu, J. P. Lang, and B. F. Abrahams (2011). J. Am. Chem. Soc. 133, 11042.

    Article  CAS  PubMed  Google Scholar 

  10. F. L. Hu, Y. Mi, C. Zhu, B. F. Abrahams, P. Braunstein, and J. P. Lang (2018). Angew. Chem. Int. Ed. 57, 12696.

    Article  CAS  Google Scholar 

  11. Y. X. Shi, W. H. Zhang, B. F. Abrahams, P. Braunstein, and J. P. Lang (2019). Angew. Chem. Int. Ed. 58, 9453.

    Article  CAS  Google Scholar 

  12. Y. X. Shi, H. H. Chen, W. H. Zhang, G. S. Day, J. P. Lang, and H. C. Zhou (2019). Chem. Eur. J. 25, 8543.

    Article  CAS  PubMed  Google Scholar 

  13. R. Kaur, S. Sen, M. C. Larsen, L. Tavares, J. Kjelstrup-Hansen, M. Ishida, A. Zieleniewska, V. M. Lynch, S. Bahring, D. M. Guldi, J. L. Sessler, and A. Jana (2020). J. Am. Chem. Soc. 142, 11497.

    Article  CAS  PubMed  Google Scholar 

  14. B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, and G. Qian (2009). Angew. Chem. Int. Ed. 48, 500.

    Article  CAS  Google Scholar 

  15. B. Wang, R. He, L. H. Xie, Z. J. Lin, X. Zhang, J. Wang, H. Huang, Z. Zhang, K. S. Schanze, J. Zhang, S. Xiang, and B. Chen (2020). J. Am. Chem. Soc. 142, 12478.

    Article  CAS  PubMed  Google Scholar 

  16. C. Y. Liu, X. R. Chen, H. X. Chen, Z. Niu, H. Hirao, P. Braunstein, and J. P. Lang (2020). J. Am. Chem. Soc. 142, 6690.

    Article  CAS  PubMed  Google Scholar 

  17. I. Abánades Lázaro and R. S. Forgan (2019). Coord. Chem. Rev. 380, 230.

    Article  CAS  Google Scholar 

  18. M. H. Teplensky, M. Fantham, P. Li, T. C. Wang, J. P. Mehta, L. J. Young, P. Z. Moghadam, J. T. Hupp, O. K. Farha, C. F. Kaminski, and D. Fairen-Jimenez (2017). J. Am. Chem. Soc. 139, 7522.

    Article  CAS  PubMed  Google Scholar 

  19. M. F. Wang, Y. Mi, F. L. Hu, Z. Niu, X. H. Yin, Q. Huang, H. F. Wang, and J. P. Lang (2020). J. Am. Chem. Soc. 142, 700.

    Article  CAS  PubMed  Google Scholar 

  20. L. Zhou, M. Z. Zhao, X. Y. Zhang, and J. P. Zhang (2020). Inorg. Chem. 59, 12017.

    Article  CAS  PubMed  Google Scholar 

  21. J. P. Lang, Q. F. Xu, R. X. Yuan, and B. F. Abrahams (2004). Angew. Chem. Int. Ed. 43, 4741.

    Article  CAS  Google Scholar 

  22. X. Chen, H. X. Li, Z. Y. Zhang, W. Zhao, J. P. Lang, and B. F. Abrahams (2012). Chem. Commun. 48, 4480.

    Article  CAS  Google Scholar 

  23. W. H. Zhang, Z. G. Ren, and J. P. Lang (2016). Chem. Soc. Rev. 45, 4995.

    Article  CAS  PubMed  Google Scholar 

  24. Q. Liu, W. H. Zhang, and J. P. Lang (2017). Coord. Chem. Rev. 350, 248.

    Article  CAS  Google Scholar 

  25. W. H. Zhang, Q. Liu, and J. P. Lang (2015). Coord. Chem. Rev. 293, 187.

    Article  CAS  Google Scholar 

  26. S. J. Bao, Z. M. Xu, Y. Ju, Y. L. Song, H. Wang, Z. Niu, X. P. Li, P. Branustein, and J. P. Lang (2020). J. Am. Chem. Soc. 142, 13356.

    Article  CAS  PubMed  Google Scholar 

  27. Y. P. Wu, X. Q. Wu, J. F. Wang, J. Zhao, W. W. Dong, D. S. Li, and Q. C. Zhang (2016). Cryst. Growth Des. 16, 2309.

    Article  CAS  Google Scholar 

  28. N. Saracoglu (2007). Tetrahedron 63, 4199.

    Article  CAS  Google Scholar 

  29. G. Clavier and P. Audebert (2010). Chem. Rev. 110, 3299.

    Article  CAS  PubMed  Google Scholar 

  30. M. Savastano, C. Bazzicalupi, C. Giorgi, C. Garca-Gallarn, M. D. Lpez de la Torre, F. Pichierri, A. Bianchi, and M. Melguizo (2016). Inorg. Chem. 55, 8013.

    Article  CAS  PubMed  Google Scholar 

  31. M. Savastano, C. Garca-Gallarn, M. D. L. de la Torre, C. Bazzicalupi, A. Bianchi, and M. Melguizo (2019). Coord. Chem. Rev. 397, 112.

    Article  CAS  Google Scholar 

  32. O. Stetsiuk, A. Abherve, and N. Avarvari (2020). Dalton Trans. 49, 5759.

    Article  CAS  PubMed  Google Scholar 

  33. J. Li, Y. Peng, H. Liang, Y. Yu, B. Xin, G. Li, Z. Shi, and S. Feng (2011). Eur. J. Inorg. Chem. 2011, 2712.

    Article  CAS  Google Scholar 

  34. J. Yang, M. Lutz, A. Grzech, F. M. Mulder, and T. J. Dingemans (2014). CrystEngComm 16, 5121.

    Article  CAS  Google Scholar 

  35. X. M. Du, R. F. Zhang, Q. L. Li, S. Cheng, Y. X. Li, J. Ru, and C. L. Ma (2021). J. Organomet. Chem. 935, 121654.

    Article  CAS  Google Scholar 

  36. H. Li, Y. F. Han, Y. J. Lin, Z. W. Guo, and G. X. Jin (2014). J. Am. Chem. Soc. 136, 2982.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Zhao, L. L. Dang, Z. M. Zhai, L. F. Ma, and L. Y. Wang (2020). J. Solid State Chem. 290, 121573.

    Article  CAS  Google Scholar 

  38. Y. Zhao, X. H. Chang, G. Z. Liu, L. F. Ma, and L. Y. Wang (2015). Cryst. Growth Des. 15, 966.

    Article  CAS  Google Scholar 

  39. L. Y. Zhao, L. Feng, X. C. Deng, L. W. Liu, and L. Ren (2018). J. Clust. Sci. 29, 1023.

    Article  CAS  Google Scholar 

  40. T. Zheng, S. S. Bao, M. Ren, and L. X. Zheng (2013). Dalton Trans. 42, 16396.

    Article  CAS  PubMed  Google Scholar 

  41. H. Zhao, D. Jia, J. Li, G. J. Moxey, and C. Zhang (2015). Inorg. Chim. Acta 432, 1.

    Article  CAS  Google Scholar 

  42. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. Howard, and H. Puschmann (2015). Acta Cryst. A 71, 59.

    Article  CAS  Google Scholar 

  43. G. M. Sheldrick (2015). Acta Cryst. A 71, 3.

    Article  CAS  Google Scholar 

  44. H. Jia, W. Li, Z. Ju, and J. Zhang (2006). Inorg. Chem. 21, 4264.

    Google Scholar 

  45. S. Liu, Q. Xu, S. Li, R. Zhang, L. Wang, and J. Liu (2014). Z. Kristallogr. New Cryst. Struct. 229, 427.

    Article  CAS  Google Scholar 

  46. H. Zou, Y. He, L. Gui, and F. Liang (2011). CrystEngComm 13, 3325.

    Article  CAS  Google Scholar 

  47. G. D. Zou, X. X. Huo, X. C. Yu, L. Tang, B. Zhang, and X. Y. Huang (2016). Inorg. Chem. Commun. 74, 16.

    Article  CAS  Google Scholar 

  48. Y. Liu, X. L. Ao, P. Q. Jiao, F. Wang, and L. Ma (2019). J. Clust. Sci. 31, 109.

    Article  CAS  Google Scholar 

  49. M. Lei, X. Wang, Y. Shi, and Q. Zhang (2019). J. Clust. Sci. 31, 347.

    Article  CAS  Google Scholar 

  50. J. L. Dong, K. H. He, D. Z. Wang, Y. H. Zhang, and D. H. Wang (2018). J. Solid State Chem. 263, 164.

    Article  CAS  Google Scholar 

  51. W. Duan, B. Du, J. Dong, W. Wu, B. Li, and L. Wang (2019). J. Clust. Sci. 31, 751.

    Article  CAS  Google Scholar 

  52. L. P. Xue and Z. H. Li (2012). J. Clust. Sci. 24, 115.

    Article  CAS  Google Scholar 

  53. Y. M. Li, X. F. Li, Y. Y. Wu, D. L. Collins-Wildman, S. M. Hu, Y. Liu, H. Y. Li, X. W. Zhao, L. Y. Jin, and D. B. Dang (2018). Cryst. Growth Des. 18, 7541.

    Article  CAS  Google Scholar 

  54. L. Zhang, L. Liu, C. Huang, X. Han, L. A. Guo, H. Xu, H. Hou, and Y. Fan (2015). Cryst. Growth Des. 15, 3426.

    Article  CAS  Google Scholar 

  55. X. L. Wang, F. F. Sui, H. Y. Lin, J. W. Zhang, and G. C. Liu (2014). Cryst. Growth Des. 14, 3438.

    Article  CAS  Google Scholar 

  56. Y. T. Yan, W. Y. Zhang, F. Zhang, F. Cao, R. F. Yang, Y. Y. Wang, and L. Hou (2018). Dalton Trans. 47, 1682.

    Article  CAS  PubMed  Google Scholar 

  57. Y. F. Niu, L. T. Cui, J. Han, and X. L. Zhao (2016). J. Solid State Chem. 241, 18.

    Article  CAS  Google Scholar 

  58. Y. Liu, W. J. Shi, Y. K. Lu, G. Liu, L. Hou, and Y. Y. Wang (2019). Inorg. Chem. 58, 16743.

    Article  CAS  PubMed  Google Scholar 

  59. X. N. Cheng, W. Xue, W. X. Zhang, and X. M. Chen (2008). Chem. Mater. 20, 5345.

    Article  CAS  Google Scholar 

  60. Z. Y. Du, L. Zhang, B. Y. Wang, S. J. Liu, B. Huang, C. M. Liu, and W. X. Zhang (2017). CrystEngComm 19, 1052.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Foundation for the Introduced Talents of Kunming University of Science and Technology (No.KKSY201507026), the Analysis Testing Fund of Kunming University of Science and Technology (No.2020M20192111072), the Joint Fund of National Natural Science Foundation of China and Yunnan (Grant No.U1502273), and the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (Grant No.CNMRCUKF1606).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqi Liu or Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, Y., Jin, N. et al. Assembly of Three New Co2/Mn5/Co5-Cluster-Based Metal–Organic Frameworks: Syntheses, Structure, Thermal Stability and Magnetic Properties. J Clust Sci 33, 2123–2137 (2022). https://doi.org/10.1007/s10876-021-02129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02129-x

Keywords

Navigation