Skip to main content
Log in

Optimal control model of an enterprise for single and inheriting periods of carbon emission reduction

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

In this paper, based on the framework of the single-period model, we establish an optimal control model for the inheriting period which allows inter-phase banking and borrowing of allowances under the cap-and-trade system. By considering the abatement control policy and the initial auction amount of allowances, we optimize the problem in two steps. The two models can then be expressed using the Hamilton–Jacobi–Bellman (HJB) equations. In the framework of viscosity solution, we prove that the value functions in two models are the unique viscosity solutions of the corresponding HJB equations. Finally, we analyze the properties of optimal policy by referring to numerical results and a comparison of the two models is presented. Our results show that under the same circumstances, allowing inter-phase banking and borrowing of allowances indeed reduces the company’s abatement costs and has an incentive-based effect on the company’s emission reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hepburn, C.: Carbon trading: a review of the kyoto mechanisms. Annu. Rev. Environ. Resour. 32, 375–393 (2007)

    Article  Google Scholar 

  2. Carmona, R., Fehr, M., Hinz, J.: Optimal stochastic control and carbon price formation. SIAM J. Control Optim. 48, 2168–2190 (2009)

    Article  MathSciNet  Google Scholar 

  3. Carmona, R., Fehr, M., Hinz, J., Porchet, A.: Market design for emission trading schemes. SIAM Rev. 52, 403–452 (2010)

    Article  MathSciNet  Google Scholar 

  4. Zagheni, E., Billari, F.C.: A cost valuation model based on a stochastic representation of the IPAT equation. Popul. Environ. 29, 68–82 (2007)

    Article  Google Scholar 

  5. Wang, M., Wang, M., Wang, S.: Optimal investment and uncertainty on China’s carbon emission abatement. Energy Policy 41, 871–877 (2012)

    Article  Google Scholar 

  6. Yang, X., Liang, J.: Minimization of the nation cost due to carbon emission. Syst. Eng. Theory Pract. 34, 640–647 (2014)

    Google Scholar 

  7. Yang, X., Liang, J., Hu, B.: Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete Contin. Dyn. Syst. Ser. B 22, 2939–2969 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Guo, H., Liang, J.: An optimal control model for reducing and trading of carbon emissions. Phys. A 446, 11–21 (2016)

    Article  MathSciNet  Google Scholar 

  9. Guo, H., Liang, J.: An optimal control model of carbon reduction and trading. Math. Control Relat. Fields 6, 535–550 (2016)

    Article  MathSciNet  Google Scholar 

  10. Guo, H.: Research on stochastic optimization model related to carbon emission reduction and carbon trade. Tongji University, Shanghai (2018). Doctoral thesis

    Google Scholar 

  11. Ye, B.: EU-ETS 3-phase quota distribution and its evolution. China Open. J. 3, 64–68 (2013)

    Google Scholar 

  12. Schleich, J., Ehrhart, K.M., Hoppe, C., Seifert, S.: Banning banking in EU emissions trading? Energy Policy 34, 112–120 (2006)

    Article  Google Scholar 

  13. Chevallier, J.: Banking and borrowing in the EU ETS: a review of economic modelling, current provisions and prospects for future design. J. Econom. Surv. 26, 157–176 (2012)

    Article  Google Scholar 

  14. Rubin, J.D.: A model of intertemporal emission trading, banking, and borrowing. J. Environ. Econ. Manage. 31, 269–286 (1996)

    Article  Google Scholar 

  15. Liang, J., Huang, W.: Optimal control strategy of companies: inheriting period and carbon emission reduction. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/3461747

  16. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  Google Scholar 

  17. Crandall, M.G., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  18. Seifert, J., Uhrig-Homburg, M., Wagner, M.: Dynamic behavior of \(CO_2\) spot prices. J. Environ. Econ. Manage. 56, 180–194 (2008)

    Article  Google Scholar 

  19. Pham, H.: Continuous-time stochastic control and optimization with financial applications. Springer-Verlag, Berlin Heidelberg (2009)

    Book  Google Scholar 

  20. Daggash, H.A., Heuberger, C.F., Dowell, N.M.: The role and value of negative emissions technologies in decarbonising the UK energy system. Int. J. Greenh. Gas Control 81, 181–198 (2019)

    Article  Google Scholar 

  21. Bui, M., Fajardy, M., Dowell, N.M.: Bio-energy with carbon capture and storage (BECCS): Opportunities for performance improvement. Fuel 213, 164–175 (2018)

    Article  Google Scholar 

  22. Creutzig, F., Ravindranath, N.H., Berndes, G., et al.: Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015)

    Article  Google Scholar 

  23. Jiang, L., Chen, Y.: Lecture Notes on Mathematical Physics Equations, 3rd edn. Higher Education Press, Beijing (2007)

    Google Scholar 

  24. Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  25. Krylov, N.V.: Controlled diffusion processes. Springer-Verlag, New York (1980)

    Book  Google Scholar 

  26. Yong, J., Zhou, X.: Stochastic controls: Hamiltonian systems and HJB equations. Springer, New York (1999)

    Book  Google Scholar 

  27. Bian, B., Hu, S., Yuan, Q., Zheng, H.: Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete Contin. Dyn. Syst. 35, 5413–5433 (2015)

    Article  MathSciNet  Google Scholar 

  28. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Huang, C.-S., Wang, S., Teo, K.L.: Solving Hamilton–Jacobi–Bellman equations by a modified method of characteristics. Nonlinear Anal. 40, 279–293 (2000)

    Article  MathSciNet  Google Scholar 

  30. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. SIAM 3, 28–41 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlin Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (No. 12071349)

Appendix

Appendix

Proof of Proposition 1

(i) First we prove that \(V_1(x,t)\) is continuous with respect to x, uniformly in t.

Fix \(t\in [0,T]\), \(\forall x_2\ge x_1\), \(\exists u_1^*.\), \(u_2^*.\in {\mathscr {U}}\), such that

$$\begin{aligned}J_1(x_i,t;u_i^*.)-\inf _{u_i.\in {\mathscr {U}}}J_1(x_i,t;u_i.)\le \frac{1}{2}|x_2-x_1|,\quad i=1,2.\end{aligned}$$

According to Proposition 2, we have

$$\begin{aligned}&J_1(x_2,t;u.)\ge J_1(x_1,t;u.),\quad \forall u.\in {\mathscr {U}}.\\&V_1(x_2,t)\ge V_1(x_1,t). \end{aligned}$$

Then

$$\begin{aligned}&|V_1(x_2,t)-V_1(x_1,t)|=|\inf _{u_2.\in {\mathscr {U}}}J_1(x_2,t;u_2.)-\inf _{u_1.\in {\mathscr {U}}}J_1(x_1,t;u_1.)|\\&\quad =\inf _{u_2.\in {\mathscr {U}}}J_1(x_2,t;u_2.)-\inf _{u_1.\in {\mathscr {U}}}J_1(x_1,t;u_1.)\\&\quad \le J_1(x_2,t;u_1^*.)-\inf _{u_1.\in {\mathscr {U}}}J_1(x_1,t;u_1.)\\&\quad \le (J_1(x_2,t;u_1^*.)-\inf _{u_1.\in {\mathscr {U}}}J_1(x_1,t;u_1.))+|J_1(x_1,t;u_2^*.)-J_1(x_2,t;u_2^*.)+\frac{1}{2}|x_2-x_1||\\&\quad \le (J_1(x_2,t;u_1^*.)-J_1(x_1,t;u_1^*.)+\frac{1}{2}|x_2-x_1|)+|J_1(x_1,t;u_2^*.)-J_1(x_2,t;u_2^*.)\\&\qquad +\frac{1}{2}|x_2-x_1||\\&\quad \le |J_1(x_2,t;u_1^*.)-J_1(x_1,t;u_1^*.)+\frac{1}{2}|x_2-x_1||+|J_1(x_1,t;u_2^*.)-J_1(x_2,t;u_2^*.)\\&\qquad +\frac{1}{2}|x_2-x_1||\\&\quad \le |J_1(x_2,t;u_1^*.)-J_1(x_1,t;u_1^*.)|+|J_1(x_1,t;u_2^*.)-J_1(x_2,t;u_2^*.)|+|x_2-x_1|. \end{aligned}$$

\(\forall u^*.\in {\mathscr {U}}\), we have

$$\begin{aligned}&|J_1(x_2,t;u^*.)-J_1(x_1,t;u^*.)|\\&\quad \le E\Big [e^{-r(T-t)}|P((X_{2,T}-N_1-N_2)^+-(X_{1,T}-N_1-N_2)^+)|\Big |X_{1,t}=x_1,X_{2,t}=x_2\Big ]\\&\quad \le E\Big [e^{-r(T-t)}P|X_{2,T}-X_{1,T}|\Big |X_{1,t}=x_1,X_{2,t}=x_2\Big ]\\&\quad =E\Big [e^{-r(T-t)}P|x_2-x_1|\Big ]. \end{aligned}$$

where \(E[X_{1,T}|X_{1,t}=x_1]\) denotes the expectation of X in (3) at T with initial value \(X_t=x_1\) and \(E[X_{2,T}|X_{2,t}=x_2]\) denotes the expectation of X in (3) at T with initial value \(X_t=x_2\).

That is, \(\exists M_1>0\), such that

$$\begin{aligned}|J_1(x_2,t;u^*.)-J_1(x_1,t;u^*.)|<\frac{PM_1}{2}|x_2-x_1|.\end{aligned}$$

Then,

$$\begin{aligned}|V_1(x_2,t)-V_1(x_1,t)|<(PM_1+1)|x_2-x_1|.\end{aligned}$$

Below we prove the continuity of \(V_1(x,t)\) with respect to t.

Fix \(x\in R\), \(\forall 0\le t_1\le t_2\le T\), \(\exists u_1^*.\), \(u_2^*.\in {\mathscr {U}}\), such that

$$\begin{aligned}0<J_1(x,t_i;u_i^*.)-\inf _{u_i.\in {\mathscr {U}}}J_1(x,t_i;u_i.)\le \frac{1}{2}|t_1-t_2|,\quad i=1,2.\end{aligned}$$

Similar to before, we have

$$\begin{aligned}|V_1(x,t_2)-V_1(x,t_1)|\le & {} |J_1(x,t_2;u_1^*.)-J_1(x,t_1;u_1^*.)|+|J_1(x,t_2;u_2^*.)\\&-J_1(x,t_1;u_2^*.)|+|t_1-t_2|.\end{aligned}$$

\(\forall u^*.\in {\mathscr {U}}\), we have

$$\begin{aligned}&|J_1(x,t_2;u^*.)-J_1(x,t_1;u^*.)|\\&\quad \le E\Big [|\int _{t_2}^Te^{-r(s-t_2)}C(u^*)ds-\int _{t_1}^Te^{-r(s-t_1)}C(u^*)ds+e^{-r(T-t_2)}P(X_{2,T}-N_1-N_2)^+\\&\qquad -e^{-r(T-t_1)}P(X_{1,T}-N_1-N_2)^+|\Big |X_{2,t_2}=x,X_{1,t_1}=x\Big ]\\&\quad \le \frac{m{\bar{u}}^2}{2r}\Big [1-e^{-r(t_2-t_1)}\Big ]\\&\qquad +e^{-r(T-t_2)}E\Big [|P(X_{2,T}-N_1-N_2)^+-P(X_{1,T}-N_1-N_2)^+|\Big |X_{2,t_2}=x,X_{1,t_1}=x\Big ]\\&\qquad +|e^{-r(T-t_2)}-e^{-r(T-t_1)}|E\Big [|P(X_{1,T}-N_1-N_2)^+|\Big |X_{2,t_2}=x,X_{1,t_1}=x\Big ]. \end{aligned}$$

where \(E[X_{1,T}|X_{1,t_1}=x]\) denotes the expectation of X in (3) at T with initial value \(X_{t_1}=x\) and \(E[X_{2,T}|X_{2,t_2}=x]\) denotes the expectation of X in (3) at T with initial value \(X_{t_2}=x\).

Since

$$\begin{aligned}&E\Big [|P(X_{2,T}-N_1-N_2)^+-P(X_{1,T}-N_1-N_2)^+|\Big |X_{2,t_2}=x,X_{1,t_1}=x\Big ]\\&\quad \le E\Big [P|X_{2,T}-X_{1,T}|\Big |X_{2,t_2}=x,X_{1,t_1}=x\Big ]\\&\quad \le PC_1(1+|x|)\sqrt{t_2-t_1}, \end{aligned}$$

and

$$\begin{aligned}E\Big [|P(X_{1,T}-N_1-N_2)^+|\Big |X_{2,t_2}=x,X_{1,t_1}=x\Big ]\le PC_2(1+|x|),\end{aligned}$$

then, \(\exists M_2>0\),\(M_3>0\) such that

$$\begin{aligned}|J_1(x,t_2;u^*.)-J_1(x,t_1;u^*.)|<\frac{M_2}{2}(1+|x|)\sqrt{t_2-t_2}+\frac{M_3}{2}|t_2-t_1|.\end{aligned}$$

Therefore,

$$\begin{aligned}|V_1(x,t_2)-V_1(x,t_1)|<M_2(1+|x|)\sqrt{t_2-t_2}+(M_3+1)|t_2-t_1|.\end{aligned}$$

For (ii), similar to the technique in (i), we can prove \(V_2(x,s,t)\) is continuous with respect to x, uniformly in t and continuous with respect to s, uniformly in t.

Below we prove the continuity of \(V_2(x,s,t)\) with respect to t. Fix \(x,s\in R\times R^+\), \(\forall 0\le t_1\le t_2\le T\), \(\exists u_1^*.\), \(u_2^*.\in {\mathscr {U}}\), such that

$$\begin{aligned}0<J_2(x,s,t_i;u_i^*.)-\inf _{u_i.\in {\mathscr {U}}}J_2(x,s,t_i;u_i.)\le \frac{1}{2}|t_2-t_1|,\quad i=1,2.\end{aligned}$$

Similar to previous, we have

$$\begin{aligned}&|V_2(x,s,t_2)-V_2(x,s,t_1)|\\&\quad \le |J_2(x,s,t_2;u_1^*.)-J_2(x,s,t_1;u_1^*.)|+|J_2(x,s,t_2;u_2^*.)-J_2(x,s,t_1;u_2^*.)|+|t_2-t_1|. \end{aligned}$$

\(\forall u^*.\in {\mathscr {U}}\), let

$$\begin{aligned}Q_i:=\min \{P,S_{i,T}\}(X_{i,T}-N_1-N_2)^+-S_{i,T}(X_{i,T}-N_1-N_2)^-,\quad i=1,2.\end{aligned}$$

Then, we have

$$\begin{aligned}&|J_2(x,s,t_2;u^*.)-J_2(x,s,t_1;u^*.)|\\&\quad \le \frac{m{\bar{u}}}{2r}|1-e^{-r(t_2-t_1)}|+e^{-r(T-t_2)}E\Big [|Q_2-Q_1|\Big |X_{2,t_2}\!=\!x,S_{2,t_2}\!=\!s,X_{1,t_1}\!=\!x,S_{1,t_1}\!=\!s\Big ]\\&\qquad +|e^{-r(T-t_2)}-e^{-r(T-t_1)}|E\Big [|Q_1|\Big |X_{2,t_2}=x,S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]. \end{aligned}$$

In the above equation, according to the existence and uniqueness theorem of strong solution [26], we have

$$\begin{aligned}&E\Big [|Q_2-Q_1|\Big |X_{2,t_2}=x,S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad =E\Big [|\min \{P,S_{2,T}\}(X_{2,T}-N_1-N_2)^+-S_{2,T}(X_{2,T}-N_1-N_2)^-\\&-\min \{P,S_{1,T}\}(X_{1,T}-N_1-N_2)^+\\&\quad \quad +S_{1,T}(X_{1,T}-N_1-N_2)^-|\Big |X_{2,t_2}=x,S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad \le E\Big [|\min \{P,S_{2,T}\}((X_{2,T}-N_1-N_2)^+-(X_{1,T}-N_1-N_2)^+)|\\&\qquad +|(\min \{P,S_{2,T}\}-\min \{P,S_{1,T}\})(X_{1,T}-N_1-N_2)^+|\\&\quad \quad +|S_{2,T}((X_{2,T}-N_1-N_2)^--(X_{1,T}-N_1-N_2)^-)|\\&\quad \quad +|(S_{2,T}-S_{1,T})(X_{1,T}-N_1-N_2)^-|\Big |X_{2,t_2}=x,\\&S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad \le E\Big [2S_{2,T}|X_{2,T}-X_{1,T}|+2|S_{2,T}-S_{1,T}||X_{1,T}-N_1-N_2|\Big |X_{2,t_2}=x,\\&S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad \le M_3s|x|\sqrt{t_2-t_1}+M_4s\sqrt{t_2-t_1}, \end{aligned}$$

where \(M_3>0\), \(M_4>0\) are constants.

And

$$\begin{aligned}&E\Big [|Q_1|\Big |X_{2,t_2}=x,S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad =E\Big [|\min \{P,S_{1,T}\}(X_{1,T}-N_1-N_2)^+-S_{1,T}(X_{1,T}-N_1-N_2)^-|\Big |X_{2,t_2}=x,\\&\quad S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad \le E\Big [2|S_{1,T}||X_{1,T}-N_1-N_2||X_{2,t_2}=x,\\&\quad S_{2,t_2}=s,X_{1,t_1}=x,S_{1,t_1}=s\Big ]\\&\quad \le M_5s|x|+M_6s, \end{aligned}$$

where \(M_5>0\), \(M_6>0\) are constants.

That is, \(\exists M_7>0\), \(M_8>0\), such that

$$\begin{aligned}|J_2(x,s,t_2;u^*.)-J_2(x,s,t_1;u^*.)|\le \frac{M_7}{2}(x+1)s\sqrt{t_2-t_1}+\frac{M_8}{2}|t_2-t_1|.\end{aligned}$$

Then,

$$\begin{aligned}|V_2(x,s,t_2)-V_2(x,s,t_1)|<M_7(x+1)s\sqrt{t_2-t_2}+(M_8+1)|t_2-t_1|.\end{aligned}$$

Therefore, \(V_2(x,s,t)\) is continuous with respect to t. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Huang, W. Optimal control model of an enterprise for single and inheriting periods of carbon emission reduction. Math Finan Econ 16, 89–123 (2022). https://doi.org/10.1007/s11579-021-00302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-021-00302-4

Keywords

Mathematics Subject Classification

JEL Classification

Navigation