Skip to main content
Log in

Halloysite, Natural Aluminosilicate Nanotubes: Structural Features and Adsorption Properties (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The main properties of halloysite, natural aluminosilicate nanotubes, are briefly considered in the review. Published data on the adsorption immobilization of proteins by halloysite and on catalytic properties of enzyme adsorption layers on the halloysite surface are analyzed and summarized. The results of authors’ studies dealing with physicochemical properties of halloysite samples are summarized. Data are given on the synthesis of zeolites, mesoporous molecular sieves, and nanotubes of silicon and aluminum oxides from halloysite. Possible pathways of halloysite synthesis under laboratory conditions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B., Clay Miner., 2005, vol. 40, pp. 383–426. https://doi.org/10.1180/0009855054040180

    Article  CAS  Google Scholar 

  2. Yuan, P., Tan, T., and Annabi-Bergaya, F., Appl. Clay Sci., 2015, vols. 112–113, pp. 75–93. https://doi.org/10.1016/j.clay.2015.05.001

    Article  CAS  Google Scholar 

  3. Yang, H., Zhang, Y., and Ouyang, J., Develop. Clay Sci., 2016, vol. 7, pp. 67–91. https://doi.org/10.1016/B978-0-08-100293-3.00004-2

    Article  CAS  Google Scholar 

  4. Tharmavaram, М., Pandey, G., and Rawtani, D., Adv. Colloid Interface Sci., 2018, vol. 261, pp. 82–101. https://doi.org/10.1016/j.cis.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  5. Goda, E.S., Gab-Allah, M.A., Singu, B.S., and Yoon, K.R., Microchem. J., 2019, vol. 147, pp. 1083–1096. https://doi.org/10.1016/j.microc.2019.04.011

    Article  CAS  Google Scholar 

  6. Sadjadi, S., Appl. Clay Sci., 2020, vol. 189, article 105537. https://doi.org/10.1016/j.clay.2020.105537

  7. Huang, J., Tang, Z.H., Zhang, X.H., and Guo, B.C., Develop. Clay Sci., 2016, vol. 7, pp. 509–553. https://doi.org/10.1016/B978-0-08-100293-3.00021-2

    Article  CAS  Google Scholar 

  8. Wu, Y., Zhang, Y., Ju, J., Yan, H., Huang, X., and Tan, Y., Polymers, 2019, vol. 11, pp. 987–1004.

    Article  Google Scholar 

  9. Bertolino, V., Cavallaro, G., Milioto, S., and Lazzara, G., Carbohydr. Polym., 2020, vol. 245, 116502. https://doi.org/10.1016/j.carbopol.2020.116502

  10. Kogure, T., Develop. Clay Sci., 2016, vol. 7, pp. 92–114. https://doi.org/10.1016/B978-0-08-100293-3.00005-4

    Article  CAS  Google Scholar 

  11. Kloprogge, J.T., Develop. Clay Sci., 2016, vol. 7, pp. 115–136. https://doi.org/10.1016/B978-0-08-100293-3.00006-6

    Article  CAS  Google Scholar 

  12. Matusik, J., Develop. Clay Sci., 2016, vol. 7, pp. 606–627. https://doi.org/10.1016/B978-0-08-100293-3.00023-6

    Article  CAS  Google Scholar 

  13. Anastopoulos, I., Mittal, A., Usman, M., Mittal, J., Yu, G., Nunez-Delgado, A., and Kornaros, M., J. Mol. Liq., 2018, vol. 269, pp. 855–868. https://doi.org/10.1016/j.molliq.2018.08.104

    Article  CAS  Google Scholar 

  14. Abdullayev, E. and Lvov, Y., Develop. Clay Sci., 2016, vol. 7, pp. 554–605. https://doi.org/10.1016/B978-0-08-100293-3.00022-4

    Article  CAS  Google Scholar 

  15. Santos, A.C., Ferreira, C., Veiga, F., Ribeiro, A.J., Panchal, A., Lvov, Y., and Agarwal, A., Adv. Colloid Interface Sci., 2018, vol. 257, pp. 58–70. https://doi.org/10.1016/j.cis.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  16. Zahidah, K.A., Kakooei, S., Ismail, C.M., and Raja, P.B., Prog. Org. Coat., 2017, vol. 111, pp. 175–185. https://doi.org/10.1016/j.progcoat.2017.05.018

    Article  CAS  Google Scholar 

  17. An, N., Zhou, C.H., Zhuang, X.Y., Tong, D.S., and Yu, W.H., Appl. Clay Sci., 2015, vol. 114, pp. 283–296. https://doi.org/10.1016/j.clay.2015.05.029

    Article  CAS  Google Scholar 

  18. Papoulis, D., Appl. Clay Sci., 2019, vol. 168, pp. 164–174. https://doi.org/10.1016/j.clay.2018.16009

    Article  CAS  Google Scholar 

  19. Bates, T., Hilderbrand, F., and Swineford, A., Am. Miner., 1950, vol. 35, pp. 463–484.

    CAS  Google Scholar 

  20. Joussein, E., Develop. Clay Sci., 2016, vol. 7, pp. 12–48. https://doi.org/10.1016/B978-0-08-100293-3.00023-6

    Article  CAS  Google Scholar 

  21. Tary, G., Bobos, I., Gomes, S.C.F., and Ferriera, J.M.F., J. Colloid Interface Sci., 1999, vol. 210, pp. 360–366.

    Article  Google Scholar 

  22. Li, X., Wang, D., Liu, Q., and Komarneni, S., Appl. Clay Sci., 2019, vol. 168, pp. 421–427. https://doi.org/10.1016/j.clay.2018.12.014

    Article  CAS  Google Scholar 

  23. Egorov, A.Yu., Razvedka Okhr. Nedr, 2015, no. 3, pp. 19–24.

    Google Scholar 

  24. Van Ranst, E., Kips, P., Mbogoni, J., Mees, F., Dumon, M., and Delvaux, B., Geoderma, 2020, vol. 375, 114527. https://doi.org/10.1016/j.geoderma.2020.114527

  25. Belogub, E.V., Palenova, E.E., and Stafeeva, Z.V., Miner.: Stroen., Svoistva, Metody Issled., 2011, no. 3, pp. 20–22.

    Google Scholar 

  26. Gorbachev, B.F., Vasyanov, G.P., Kakorin, V.I., and Luzin, V.P., Litol. Polezn. Iskop., 2007, no. 2, pp. 187–200.

    Google Scholar 

  27. Pasbakhsh, P., Churchman, G.J., and Keeling, J.L., Appl. Clay Sci., 2013, vol. 74, pp. 47–57. https://doi.org/10.1016/j.clay.2012.06.014

    Article  CAS  Google Scholar 

  28. Carr, R.M., Chaikum, N., and Patterson, N., Clays Clay Miner., 1978, vol. 26, p. 144.

    Article  CAS  Google Scholar 

  29. Tan, D., Yuan, P., Liu, D., and Du, P., Develop. Clay Sci., 2016, vol. 7, pp. 167–201. https://doi.org/10.1016/B978-0-08-100293-3.00008-X

    Article  CAS  Google Scholar 

  30. Massaro, M., Noto, R., and Riela, S., Molecules, 2020, vol. 25, 4863. https://doi.org/10.3390/molecules25204863

  31. Mills, O.E. and Creamer, L.K., N. Z. J. Dairy Sci. Technol., 1971, vol. 6, pp. 61–65.

    CAS  Google Scholar 

  32. Mills, O.E. and Creamer, L.K., J. Dairy Res., 1972, vol. 39, pp. 365–372.

    Article  CAS  Google Scholar 

  33. Lvov, Yu., Price, R., Gaber, B., and Ichinose, I., Colloids Surf. A: Physicochemical Eng. Aspects, 2002, vols. 198–200, pp. 375–382. https://doi.org/10.1016/S0927-775(01)00970-0

    Article  Google Scholar 

  34. Shchukin, D.G., Sukhorukov, G.B., Price, R.R., and Lvov, Y.M., Small, 2005, vol. 1, pp. 510–513. https://doi.org/10.1002/smll.200400120

    Article  CAS  PubMed  Google Scholar 

  35. Zhai, R., Zhang, B., Liu, L., Xie, Y., Zhang, H., and Liu, J., Catal. Commun., 2010, vol. 12, pp. 259–263. https://doi.org/10.1016/j.catcom.2010.09.30

    Article  CAS  Google Scholar 

  36. Pandey, G., Munguambe, D.M., Tharmavaram, M., Rawtani, D., and Agrawal, Y.K., Appl. Clay Sci., 2017, vol. 136, pp. 184–191. https://doi.org/10.1016/j.clay.2016.11.034

    Article  CAS  Google Scholar 

  37. Chao, C., Kiu, J., Eang, J., Zhang, Y., Zhang, B., Zhang, Y., Xiang, X., and Chen, R., ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 10559–10564. https://doi.org/10.1021/am4022973

    Article  CAS  PubMed  Google Scholar 

  38. Kadam, A.A., Jang, J., Jee, S.C., Sung, J., and Lee, D.S., Carbohydr. Polym., 2018, vol. 194, pp. 208– 216. https://doi.org/10.1016/j.carbpol.2018.04.046

    Article  CAS  PubMed  Google Scholar 

  39. Min, K., Jee, S.C., Sung, J., and Kadam, A.A., Int. J. Biol. Macromol. A, 2018, vol. 118, pp. 228–237. https://doi.org/10.1016/j.ijbiomac.201806074

    Article  CAS  Google Scholar 

  40. Atyaksheva, L.F., Pilipenko, O.S., and Tarasevich, B.N., Russ. J. Phys. Chem. A, 2021, vol. 95, pp. 188–192. https://doi.org/10.1134/S0036024421010039

    Article  CAS  Google Scholar 

  41. Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., and Liu, J., Chem. Eng. J., 2013, vol. 214, pp. 304–309. https://doi.org/10.1016/j.cej.201210.073

    Article  CAS  Google Scholar 

  42. Atyaksheva, L.F., Ibragimzade, T.I., Kasyanov, I.A., Fastov, A.Yu., and Fastov, S.A., Russ. J. Phys. Chem. A, 2021, vol. 95, pp. 1450–1455. https://doi.org/10.1134/S0036024421070050

    Article  Google Scholar 

  43. Price, R.R., Gaber, B.P., and Lvov, Y., J. Microencapsulation, 2001, vol. 18, pp. 713–722. https://doi.org/10.1080/02652040010019532

    Article  CAS  PubMed  Google Scholar 

  44. Kruif, J.K., Ledergerber, G., Garifalo, C., Fasler-Kan, E., and Kuentz, M., Eur. J. Pharm. Biopharm., 2016, vol. 101, pp. 90–102. https://doi.org/10.1016/j.ejpb.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  45. Duce, C., Porta, V.D., Bramanti, E., Campanella, B., Spepi, A., and Tine, M.R., Nanotechnology, 2017, vol. 28, pp. 1–12. https://doi.org/10.1088/1361-6528/28/5/055706

    Article  CAS  Google Scholar 

  46. Massaro, M., Cavallaro, G., Colleti, C.G., D’Azzo, G., Guernelli, S., Lazzara, G., Pieraccini, S., and Riela, S., J. Colloid Interface Sci., 2018, vol. 524, pp. 156–164. https://doi.org/10.1016/j.jcis.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  47. Bugatti, V., Sorrentino, A., and Gorrasi, G., Eur. Polym. J., 2017, pp. 495–506. https://doi.org/10.1016/j.eurpolymj.2017.06.024

  48. Sun, J., Yendluri, R., Liu, K., Guo, Y., Lvov, Y., and Yan, X., Phys. Chem. Chem. Phys., 2016, vol. 19, pp. 562–567. https://doi.org/10.1039/c6cp07450b

    Article  CAS  PubMed  Google Scholar 

  49. Wang, H., Zhao, X., Wang, S., Tao, S., Ai, N., and Wang, Y., J. Chromatogr. A, 2015, vol. 1392, pp. 20–27. https://doi.org/10.1016/j.chrome.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  50. Katana, B., Rouster, P., Varga, G., Muráth, S., Glinel, K., Jonas, A.M., and Szilagyi, I., ACS Appl. Bio Mater., 2020, vol. 3, pp. 522–530. https://doi.org/10.1021/acsabm9b00953

    Article  CAS  Google Scholar 

  51. Fan, H., Hu, M., Li, S., Zhai, Q., Wang, F., and Jiang, Y., Appl. Clay Sci., 2018, vol. 163, pp. 92–99. https://doi.org/10.1016/j.clay.2018.07.016

    Article  CAS  Google Scholar 

  52. Pietraszek, A., Karewich, A., Widnic, M., Lachowicz, D., Gajewka, M., Bernasik, A., and Nowakowska, M., Colloids Surf. B: Biointerfaces, 2019, vol. 173, pp. 1–8. https://doi.org/10.1016/j.colsurfb.2018.09.40

    Article  CAS  PubMed  Google Scholar 

  53. Lvov, Y., Aerov, A., and Fakhrulin, R., Adv. Colloid Interface Sci., 2014, vol. 207, pp. 189–198. https://doi.org/10.1016/j.cis.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  54. Tully, J., Yendluri, R., and Lvov, Y., Biomacromolecules, 2016, vol. 17, pp. 615–621. https://doi.org/10.1016/j.acs.biomac.5b01542

    Article  CAS  PubMed  Google Scholar 

  55. Chukhrai, E.S., Atyaksheva, L.F., and Pilipenko, O.S., Russ. J. Phys. Chem. A, 2011, vol. 85, pp. 888–894. https://doi.org/10.1134/S0036024411050086

    Article  CAS  Google Scholar 

  56. Zhang, Y., Cao, H., Fei, W., Cui, D., and Jia, N., Sens. Actuators B: Chemistry, 2012, vol. 162, pp. 143–148. https://doi.org/10.1016/j.snb.2011.12.051

    Article  CAS  Google Scholar 

  57. Kumar-Krishnan, S., Hernandez-Rangel, A., Pal, U., Ceballos-Sanchez, O., Flores-Ruiz, F.J., Prokhorov, E., Arias de Fuentes, O., Esparza, R., and Meyyappan, M., J. Mater. Chem. B, 2016, vol. 4, pp. 2553–2560. https://doi.org/10.1039/C6TB00051G

    Article  CAS  PubMed  Google Scholar 

  58. Yao, J., Wang, Q., Wang, Y., Zhang, Y., Zhang, B., and Zhang, H., Desalin. Water Treat., 2015, vol. 55, pp. 1291–1301. https://doi.org/10.1080/19443994.2014.023337

    Article  Google Scholar 

  59. Sun, X., Zhang, Y., Shen, H., and Jia, N., Electrochim. Acta, 2010, vol. 56, pp. 700–705. https://doi.org/10.1016/j.electacta.2010.09.095

    Article  CAS  Google Scholar 

  60. Sillu, D. and Agnihotri, S., ACS Sustain. Chem. Eng., 2020, vol. 8, pp. 900–913. https://doi.org/10.1021/acssuschemeng9b05400

    Article  CAS  Google Scholar 

  61. Abdullaev, E. and Lvov, Y., J. Mater. Chem. B, 2013, vol. 1, pp. 2894–2903. https://doi.org/10.1039/C3tb20059K20903

    Article  Google Scholar 

  62. Takahashi, H. and Nishimura, Y., Clays Clay Miner., 1967, vol. 15, pp. 185–186.

    Article  Google Scholar 

  63. Takahashi, H. and Nishimura, Y., Clays Clay Miner., 1968, vol. 16, pp. 399–400.

    Article  Google Scholar 

  64. Franco, E. and Aiello, R., Rendiconti Soc. Ital. Miner. Petrol., 1968, vol. 24(II), pp. 251–269.

    Google Scholar 

  65. Gualtieri, A.F., Phys. Chem. Miner., 2001, vol. 28, pp. 719–728. https://doi.org/10.1007/S002690100197

    Article  CAS  Google Scholar 

  66. Meftah, M., Oueslati, W., Chorfi, N., and Amara, A.B.H., Results Phys., 2017, vol. 7, pp. 1475–1484. https://doi.org/10.1016/j.rinp.2017.04.013

    Article  Google Scholar 

  67. Novembre, D., Sabatino, B.D., and Gimeno, D., Clays Clay Miner., 2005, vol. 53, pp. 28–36. https://doi.org/10.1346/CCMN.2005.0530104

    Article  CAS  Google Scholar 

  68. Zhou, C., Alshameri, A., Yan, C., Qiu, X., Wang, H., and Ma, Y., J. Porous Mater., 2012, vol. 20, pp. 587–594. https://doi.org/10.1007/s10394-12-9631-9

    Article  Google Scholar 

  69. Mamedova, G.A., Tekh. Tekhnol. Silik., 2013, vol. 20, no. 4, pp. 27–30.

    CAS  Google Scholar 

  70. Mamedova, G.A., Khim. Inter. Ustoich. Razv., 2015, vol. 23, pp. 253–257. https://doi.org/10.15372/KnUR20150304

    Article  CAS  Google Scholar 

  71. Zhou, C., Sun, T., Gao, Q., Alshameri, A., Zhu, P., Wang, H., Qiu, X., Ma, Y., and Yan, C., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, pp. 1073–1079. https://doi.org/10.1016/j.jtice.2013.09.30

    Article  CAS  Google Scholar 

  72. Xie, Y., Zhang, Y., Ouyang, J.,·and Yang, H., Phys. Chem. Miner., 2014, vol. 41, pp. 497–503. https://doi.org/10.1007/s00269-0140660-6

    Article  CAS  Google Scholar 

  73. Pham, X.N., Nguyen, M.B., and Doan, H.V., Adv. Powder Technol., 2020, vol. 31, pp. 3351–3360. https://doi.org/10.1016/j.apt.2020.06.028

    Article  CAS  Google Scholar 

  74. Zhang, A., Pan, L., Zhang, H., Liu, S., Xia, M., and Chen, X., Colloids Surf. A: Physicochem. Eng. Asp., 2012, vol. 396, pp. 182–184. https://doi.org/10.1016/j.colsufra.2011.12.067

    Article  CAS  Google Scholar 

  75. Zhang, Y., Fu, L., and Yang, H., Colloids Surf. A: Physicochem. Eng. Asp., 2012, vol. 414, pp. 115–119. https://doi.org/10.1016/j.colsufra.2012.08.003

    Article  CAS  Google Scholar 

  76. Shu, Z., Chen, Y., Zhou, J., Li, T., Yu, D., and Wang, Y., Appl. Clay Sci., 2015, vols. 112–113, pp. 17–24. https://doi.org/10.1016/j.clay.2015.04.014

    Article  CAS  Google Scholar 

  77. Shu, Z., Chen, Y., Zhou, J., Li, T., Sheng, Z., Tao, C., and Wang, Y., Appl. Clay Sci., 2016, vols. 132–133, pp. 114–121. https://doi.org/10.1016/j.clay.2016.05.024

    Article  CAS  Google Scholar 

  78. Hem, J.D. and Lind, C.J., Science, 1974, vol. 184, pp. 1171–1173.

    Article  CAS  Google Scholar 

  79. Eberl, D. and Hower, J., Clays Clay Miner., 1975, vol. 23, pp. 301–309.

    Article  CAS  Google Scholar 

  80. White, R.D., Bavykin, D.V., and Walsh, F.C., J. Phys. Chem. C, 2012, vol. 116, pp. 8824–8833. https://doi.org/10.1021/jp300068t

    Article  CAS  Google Scholar 

  81. Maslennikova, T.P., Korytova, E.N., and Pivovarova, L.N., Fiz. Khim. Stekla, 2012, vol. 38, pp. 890–893.

    Google Scholar 

  82. Golubeva, O.Yu., Alikina, Y.A., and Kalashnikova, T.A., Appl. Clay Sci., 2020, vol. 199, article 105879. https://doi.org/10.1016/j.clay.2020.105879

  83. Alikina, Yu.A., Kalashnikova, T.A., and Golubeva, O.Yu., Glass Phys. Chem., 2021, vol. 47, pp. 42–49.

    Article  CAS  Google Scholar 

  84. Parham, W.E., Clays Clay Miner., 1969, vol. 17, pp. 13–22.

    Article  CAS  Google Scholar 

  85. Kawano, M. and Tomita, K., Clays Clay Miner., 1995, vol. 43, pp. 212–222.

    Article  CAS  Google Scholar 

  86. Kuroda, Y., Ito, K., Itabashi, K., and Kuroda, K., Langmuir, 2011, vol. 27, pp. 2028–2035. https://doi.org/

    Article  CAS  Google Scholar 

  87. Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Liu, D., and Liu, Z., Appl. Clay Sci., 2013, vols. 83–84, pp. 68–76. https://doi.org/10.1016/j.clay.2013.08.027

    Article  CAS  Google Scholar 

  88. Li, X., Liu, Q., Cheng, H., Zhang, S., and Frost, R.L., J. Colloid Interface Sci., 2015, vol. 444, pp. 74–80. https://doi.org/10.1016/j.jcis.2014.12.039

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Physicochemical analysis of halloysite samples was financially supported by the Russian Science Foundation (project no. 19-73-10160). The study was performed within the framework of government assignment “Physical Chemistry of the Surface, Adsorption, and Catalysis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Atyaksheva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atyaksheva, L.F., Kasyanov, I.A. Halloysite, Natural Aluminosilicate Nanotubes: Structural Features and Adsorption Properties (A Review). Pet. Chem. 61, 932–950 (2021). https://doi.org/10.1134/S0965544121080119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121080119

Keywords:

Navigation