Skip to main content
Log in

Diffusion welding of CoCrNi medium entropy alloy (MEA) and SUS 304 stainless steel at different bonding temperatures

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This research work was mainly concerned to investigate the effect of bonding temperature on the weldability of CoCrNi MEA with SUS 304 stainless steel. Shear test and nano hardness measurements were used to evaluate the mechanical performance of the welded joints. The formation of IMCs intensified along with the bond interface when samples were treated at low bonding temperature (i.e., 925 °C) which badly affected the joint’s shear strength. Reduction in IMCs formation transpired as the bonding temperature increase, and eventually, the formation of the solid solution was instigated at the bond interface. Furthermore, at 1075 °C bonding temperature, the bond interface was almost free from IMCs and transformed to a solid solution, triggering the enhancement of the joint’s shear strength. SEM with EDX, XRD, and thermal analysis was used for microstructural examination to comprehend the interface reaction/bond formation mechanism during the welding process. Moreover, a thermodynamic description is also provided to predict the phase formation at the bond interface. In this regard, established rules (i.e., ΔHmix, ΔSmix, Ω, and δ) to determine the phase stability of HEAs were implemented which found valid in predicting the phase formation at the bond interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yeh J-W, Lin S-J (2018) Breakthrough applications of high-entropy materials. J Mater Res 33(19):3129–3137

    Article  CAS  Google Scholar 

  2. George EP, Raabe D, Ritchie RO (2019) High-entropy alloys. Nat Rev Mater 4(8):515–534

    Article  CAS  Google Scholar 

  3. Ye YF et al (2016) High-entropy alloy: challenges and prospects. Mater Today 19(6):349–362

    Article  CAS  Google Scholar 

  4. Lu ZP et al (2015) An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 66:67–76

    Article  CAS  Google Scholar 

  5. Li Z et al (2019) Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci 102:296–345

    Article  CAS  Google Scholar 

  6. Gludovatz B et al (2016) Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 7:10602

    Article  CAS  Google Scholar 

  7. Laplanche G et al (2017) Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater 128:292–303

    Article  CAS  Google Scholar 

  8. Zhao Y et al (2019) Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy. Mater Res Lett 7(4):152–158

    Article  CAS  Google Scholar 

  9. Gan B et al (2019) Superb cryogenic strength of equiatomic CrCoNi derived from gradient hierarchical microstructure. J Mater Sci Technol 35(6):957–961

    Article  Google Scholar 

  10. Adomako NK, Kim JH, Hyun YT (2018) High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys. J Therm Anal Calorim 133(1):13–26

    Article  CAS  Google Scholar 

  11. Lu C et al (2019) Irradiation effects of medium-entropy alloy NiCoCr with and without pre-indentation. J Nucl Mater 524:60–66

    Article  CAS  Google Scholar 

  12. Uzer B et al (2018) On the mechanical response and microstructure evolution of NiCoCr single crystalline medium entropy alloys. Mater Res Lett 6(8):442–449

    Article  CAS  Google Scholar 

  13. Wu Z et al (2014) Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater 81:428–441

    Article  CAS  Google Scholar 

  14. He J et al (2020) On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scripta Mater 175:1–6

    Article  CAS  Google Scholar 

  15. Liu XW et al (2019) Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon. J Alloy Compd 775:1068–1076

    Article  CAS  Google Scholar 

  16. Shang YY et al (2019) Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon. Intermetallics 106:77–87

    Article  CAS  Google Scholar 

  17. Chang R et al (2019) Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. J Alloy Compd 790:732–743

    Article  CAS  Google Scholar 

  18. Miao J et al (2017) The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Mater 132:35–48

    Article  CAS  Google Scholar 

  19. Dan Sathiaraj G et al (2018) Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy. Intermetallics 101:87–98

    Article  CAS  Google Scholar 

  20. Wu Z et al (2016) Weldability of a high entropy CrMnFeCoNi alloy. Scripta Mater 124:81–85

    Article  CAS  Google Scholar 

  21. Jo M-G et al (2018) Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met Mater Int 24(1):73–83

    Article  CAS  Google Scholar 

  22. Wu Z et al (2018) Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Sci Technol Weld Join 23(7):585–595

    Article  CAS  Google Scholar 

  23. Nam H et al (2017) Effect of post weld heat treatment on weldability of high entropy alloy welds. Sci Technol Weld Join 23(5):420–427

    Article  CAS  Google Scholar 

  24. Li P et al (2020) Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy. J Alloys Compd 814:152322

    Article  CAS  Google Scholar 

  25. Lin C et al (2019) Infrared brazing of CoCrFeMnNi equiatomic high entropy alloy using nickel-based braze alloys. Entropy (Basel) 21(3):283

    Article  CAS  Google Scholar 

  26. Bridges D et al (2018) Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal. Mater Lett 215:11–14

    Article  CAS  Google Scholar 

  27. Lin C et al (2020) Brazing of CoCrFeNi and CoCrFeMnNi equiatomic alloys using 70Au-8Pd-22Ni filler foil. Gold Bull 53(2):101–109

    Article  CAS  Google Scholar 

  28. Cui L et al (2014) Microstructure and mechanical properties of high-entropy alloys CoCrFeNiAl by welding. Adv Mater Res 936:1635–1640

    Article  CAS  Google Scholar 

  29. Zherebtsov S et al (2018) Use of novel welding technologies for high-entropy alloys joining. Mater Sci Forum 941:919–924

    Article  Google Scholar 

  30. Nam H et al (2019) Laser dissimilar weldability of cast and rolled CoCrFeMnNi high-entropy alloys for cryogenic applications. Sci Technol Weld Join 25(2):127–134

    Article  CAS  Google Scholar 

  31. Zhu ZG et al (2018) Friction-stir welding of a ductile high entropy alloy: microstructural evolution and weld strength. Mater Sci Eng A 711:524–532

    Article  CAS  Google Scholar 

  32. Zhu ZG et al (2017) Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy. Mater Lett 205:142–144

    Article  CAS  Google Scholar 

  33. Kashaev N et al (2018) Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Intermetallics 96:63–71

    Article  CAS  Google Scholar 

  34. Liu Y (2017) Interfacial behavior and joint performance of high-entropy alloy CoCrFeMnNi and pure Cu joints obtained by vacuum diffusion welding. J Mech Eng 53(2):84

    Article  Google Scholar 

  35. Li P et al (2020) Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy. J Mater Sci Technol 45:59–69

    Article  Google Scholar 

  36. Lei Y et al (2020) Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic. J Mater Process Technol 278:116455

    Article  CAS  Google Scholar 

  37. Li P et al (2020) Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy. Mater Sci Eng A 793:139843

    Article  CAS  Google Scholar 

  38. Peng Y et al (2021) Microstructure and mechanical properties of diffusion bonded joints of high-entropy alloy Al5(HfNbTiZr)95 and TC4 titanium alloy. J Market Res 11:1741–1752

    CAS  Google Scholar 

  39. Du YJ et al (2021) Microstructure evolution and mechanical properties of diffusion bonding Al5(TiZrHfNb)95 refractory high entropy alloy to Ti2AlNb alloy. Mater Sci Eng A 802:140610

    Article  CAS  Google Scholar 

  40. Xiong J et al (2019) Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer. J Mater Sci 54(8):6552–6564

    Article  CAS  Google Scholar 

  41. Yuan L et al (2020) Microstructure and mechanical properties in the solid-state diffusion bonding joints of Ni3Al based superalloy. Mater Sci Eng A 772:138670

    Article  CAS  Google Scholar 

  42. Clark DE, Mizia RE (2012) Diffusion welding of alloys for molten salt service – status report. USA

  43. Cox MJ, Carpenter RW, Kim MJ (2002) Interface nanochemistry effects on stainless steel diffusion bonding. Metall Mater Trans A 33(2):437–442

    Article  Google Scholar 

  44. Ohashi O, Kaieda Y (1990) Hot isostatic pressing of diffusion bonds in SUS 304 stainless steel. Weld Int 4(1):35–41

    Article  Google Scholar 

  45. Wen D et al (2020) Diffusion bonding of copper and 304 stainless steel with an interlayer of CoCrFeMnNi high-entropy alloy. Acta Metall Sin 56(8):1084–1090

    Google Scholar 

  46. Kejanli H (2020) Diffusion welding of stainless steel 304L/Monel K-500 composite materials produced with different methods. Adv Compos Lett 29:2633366X2091798

    Article  Google Scholar 

  47. Ramesh G et al (2017) Exploration of diffusion welding of AISI 304 stainless steel plates. Int J Adv Res Ideas Innov Technol 3:568–572

    Google Scholar 

  48. An N et al (2020) High temperature strengthening via nanoscale precipitation in wrought CoCrNi-based medium-entropy alloys. Mater Sci Eng A 798:140213

    Article  CAS  Google Scholar 

  49. Lu Y et al (2014) A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:6200

    Article  CAS  Google Scholar 

  50. Feng K et al (2020) Corrosion properties of laser cladded CrCoNi medium entropy alloy coating. Surf Coat Technol 397:126004

    Article  CAS  Google Scholar 

  51. Wang J et al (2020) Corrosion behavior of CoCrNi medium-entropy alloy compared with 304 stainless steel in H2SO4 and NaOH solutions. Corros Sci 177:108973

    Article  CAS  Google Scholar 

  52. Vigraman T, Ravindran D, Narayanasamy R (2012) Effect of phase transformation and intermetallic compounds on the microstructure and tensile strength properties of diffusion-bonded joints between Ti–6Al–4V and AISI 304L. Mater Des (1980-2015) 36:714–727

    Article  CAS  Google Scholar 

  53. Song T et al (2016) The interfacial microstructure and mechanical properties of diffusion-bonded joints of 316L stainless steel and the 4J29 Kovar alloy using nickel as an interlayer. Metals 6(11):263

    Article  Google Scholar 

  54. Fang YJ et al (2019) Microstructure and mechanical properties of the vacuum diffusion bonding joints of 4J29 kovar alloy and 316L stainless steel using pure cobalt interlayer. Vacuum 168:108847

    Article  CAS  Google Scholar 

  55. Bormann F, Peerlings RHJ, Geers MGD (2019) On the competition between dislocation transmission and crack nucleation at phase boundaries. Eur J Mech - A/Solids 78:103842

    Article  Google Scholar 

  56. Gao S et al (2020) Effect of incoherent phase boundary on fracture mechanism of sintered Nd-Fe-B alloy. Intermetallics 125:106866

    Article  CAS  Google Scholar 

  57. Srisuwan N et al (2016) The study of heat treatment effects on chromium carbide precipitation of 35Cr-45Ni-Nb alloy for repairing furnace tubes. Metals 6(1):26

    Article  Google Scholar 

  58. Shun T-T (2009) Du, and Yu-Chin, Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy. J Alloys Compd 478(1):269–272

    Article  CAS  Google Scholar 

  59. Kamp K, Heiko (2001) Thermodynamic studies on chromium carbides by the electromotive force (emf) method. J Alloys Compd 321(1):138–145

    Article  Google Scholar 

  60. Li ZK et al (2015) Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites. Sci Rep 5:8967

    Article  CAS  Google Scholar 

  61. Zhang YY et al (2012) Rapid growth and magnetic properties of Fe7CO3 intermetallic compound. Appl Mech Mater 152–154:501–506

    Google Scholar 

  62. Ding H et al (2020) The effect of Tb doping on the magnetic properties and microstructure of a TbNdFeCoB/Fe7Co3nanocomposite permanent magnet. Mater Res Exp 7(1):016112

    Article  CAS  Google Scholar 

  63. da Silva MTP et al (2020) Synthesis of Fe2SiO4-Fe7Co3 nanocomposite dispersed in the mesoporous SBA-15: application as magnetically separable adsorbent. Molecules 25(4):1016

    Article  CAS  Google Scholar 

  64. Liu X et al (2020) Formation of nano-phase Co3Fe7 intermetallic and its strengthening in Au80Sn20/CrMnFeCoNi solder interface. J Alloys Compd 843:155924

    Article  CAS  Google Scholar 

  65. Yang X, Zhang Y (2012) Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys 132(2–3):233–238

    Article  CAS  Google Scholar 

  66. Qin G et al (2019) Grain refinement and FCC phase formation in AlCoCrFeNi high entropy alloys by the addition of carbon. Materialia 6:100259

    Article  CAS  Google Scholar 

  67. Takeuchi A, Inoue A (2005) Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans 46(12):2817–2829

    Article  CAS  Google Scholar 

  68. Egami T, Waseda Y (1984) Atomic size effect on the formability of metallic glasses. J Non-Cryst Solids 64(1):113–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinglong Li or Jiangtao Xiong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiuddin, M., Li, J., Chandio, A.D. et al. Diffusion welding of CoCrNi medium entropy alloy (MEA) and SUS 304 stainless steel at different bonding temperatures. Weld World 65, 2193–2206 (2021). https://doi.org/10.1007/s40194-021-01165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01165-5

Keywords

Navigation