Skip to main content
Log in

One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil–water separation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, poly(1H,1H,2H,2H-perfluorodecyl acrylate) (PPFDA) thin films were deposited on stainless steel meshes by initiated chemical vapor deposition (iCVD) method to prepare superhydrophobic-superoleophilic membranes for oil–water separation. FTIR and XPS analyses showed high retention of the fluorine moieties, which are responsible for the superhydrophobic property of the as-deposited films. The measured water contact angle (WCA) values were observed to be dependent on the mesh size and the coating thickness. The maximum WCA value of the stainless steel mesh after iCVD was measured as 166.9°, while oil contact angle value being nearly zero. Hence, iCVD of PPFDA on mesh surfaces created composite structures which were water-repellent but oil-permeable. iCVD-coated meshes were directly used for oil–water separation without using an extra force or chemical reagent. A high separation efficiency value of 98.5% was observed, the value of which was dependent on the mesh size and coating thickness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hassler B (2011) Accidental versus operational oil spills from shipping in the Baltic Sea: risk governance and management strategies. Ambio 40(2):170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol 77(22):7962–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ivshina IB, Kuyukina MS, Krivoruchko AV, Elkin AA, Makarov SO, Cunningham CJ, Peshkur TA, Atlas RM, Philp JC (2015) Oil spill problems and sustainable response strategies through new technologies. Environ Sci: Process Impacts 17(7):1201–1219

    CAS  Google Scholar 

  4. Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interf Sci 342(1):135–141

    Article  CAS  PubMed  Google Scholar 

  5. Santo CE, Vilar VJ, Botelho CM, Bhatnagar A, Kumar E, Boaventura RA (2012) Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chem Eng J 183:117–123

    Article  CAS  Google Scholar 

  6. Wang CF, Lin SJ (2013) Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water. ACS Appl Mater Interf 5(18):8861–8864

    Article  CAS  Google Scholar 

  7. Song J, Lu Y, Luo J, Huang S, Wang L, Xu W, Parkin IP (2015) Barrel-shaped oil skimmer designed for collection of oil from spills. Adv Mater Interf 2(15):1500350

    Article  CAS  Google Scholar 

  8. Zhang C, Mcadams DA, Grunlan JC (2016) Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv Mater 28(30):6292–6321

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Guo Z (2019) Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horiz 4(1):52–76

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Choi CH (2013) Condensation-induced wetting state and contact angle hysteresis on superhydrophobic lotus leaves. Colloid Polym Sci 291(2):437–445

    Article  CAS  Google Scholar 

  11. Guo D, Hou K, Xu S, Lin Y, Li L, Wen X, Pi P (2018) Superhydrophobic–superoleophilic stainless steel meshes by spray-coating of a POSS hybrid acrylic polymer for oil–water separation. J Mater Sci 53(9):6403–6413

    Article  CAS  Google Scholar 

  12. Shahabadi SMS, Brant JA (2019) Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Sep Purif Technol 210:587–599

    Article  CAS  Google Scholar 

  13. Zareei Pour F, Sabzehmeidani MM, Karimi H, Madadi Avargani V, Ghaedi M (2019) Superhydrophobic–superoleophilic electrospun nanofibrous membrane modified by the chemical vapor deposition of dimethyl dichlorosilane for efficient oil–water separation. J Appl Polym Sci 136(24):47621

    Article  CAS  Google Scholar 

  14. Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23(6):719–734

    Article  CAS  PubMed  Google Scholar 

  15. Xue Z, Cao Y, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460

    Article  CAS  Google Scholar 

  16. Dunderdale GJ, England MW, Sato T, Urata C, Hozumi A (2016) Programmable oil/water separation meshes: water or oil selectivity using contact angle hysteresis. Macromol Mater Eng 301(9):1032–1036

    Article  CAS  Google Scholar 

  17. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  18. Li J, Li D, Yang Y, Li J, Zha F, Lei Z (2016) A prewetting induced underwater superoleophobic or underoil (super)hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem 18(2):541–549

    Article  CAS  Google Scholar 

  19. Sarshar MA, Swarctz C, Hunter S, Simpson J, Choi C-H (2013) Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym Sci 291(2):427–435

    Article  CAS  Google Scholar 

  20. Karim AM, Rothstein JP, Kavehpour HP (2018) Experimental study of dynamic contact angles on rough hydrophobic surfaces. J Colloid Interf Sci 513:658–665

    Article  CAS  Google Scholar 

  21. Cazabat A, Stuart MC (1987) Dynamics of wetting on smooth and rough surfaces. In: Surface forces and surfactant systems. Springer, pp 69–75

  22. Karim AM, Kavehpour HP (2015) Dynamics of spreading on ultra-hydrophobic surfaces. J Coat Technol Res 12(5): 959–964

  23. Lu Y, Yuan W (2017) Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification. ACS Appl Mater Interf 9(34):29167–29176

    Article  CAS  Google Scholar 

  24. Qing W, Shi X, Deng Y, Zhang W, Wang J, Tang CY (2017) Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation. J Membr Sci 540:354–361

    Article  CAS  Google Scholar 

  25. Du Z, Ding P, Tai X, Pan Z, Yang H (2018) Facile preparation of Ag-coated superhydrophobic/superoleophilic mesh for efficient oil/water separation with excellent corrosion resistance. Langmuir 34(23):6922–6929

    Article  CAS  PubMed  Google Scholar 

  26. Pour FZ, Karimi H, Avargani VM (2019) Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for Water-Oil separation. Polyhedron 159:54–63

    Article  CAS  Google Scholar 

  27. Zhang F, Shi Z, Chen L, Jiang Y, Xu C, Wu Z, Wang Y, Peng C (2017) Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition. Surf Coat Technol 315:385–390

    Article  CAS  Google Scholar 

  28. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem 116(15):2046–2048

    Article  Google Scholar 

  29. Liu X, Wang Y, Chen Z, Ben K, Guan Z (2016) A self-modification approach toward transparent superhydrophobic glass for rainproofing and superhydrophobic fiberglass mesh for oil-water separation. Appl Surf Sci 360:789–797

    Article  CAS  Google Scholar 

  30. Wen N, Miao X, Yang X, Long M, Deng W, Zhou Q, Deng W (2018) An alternative fabrication of underoil superhydrophobic or underwater superoleophobic stainless steel meshes for oil-water separation: originating from one-step vapor deposition of polydimethylsiloxane. Sep Purif Technol 204:116–126

    Article  CAS  Google Scholar 

  31. Zhang F, Shi Z, Xu C, Huo D, Zhang W, Peng C (2018) Self-fibering growth in the soot-templated CVD coating of silica on mesh for efficient oil/water separation. Mater Des 154:370–377

    Article  CAS  Google Scholar 

  32. Lee MW, An S, Latthe SS, Lee C, Hong S, Yoon SS (2013) Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl Mater Interf 5(21):10597–10604

    Article  CAS  Google Scholar 

  33. Matin A, Baig U, Gondal M, Akhtar S, Zubair S (2018) Superhydrophobic and superoleophilic surfaces prepared by spray-coating of facile synthesized cerium(IV) oxide nanoparticles for efficient oil/water separation. Appl Surf Sci 462:95–104

    Article  CAS  Google Scholar 

  34. Xiang M, Jiang M, Zhang Y, Liu Y, Shen F, Yang G, He Y, Wang L, Zhang X, Deng S (2018) Fabrication of a novel superhydrophobic and superoleophilic surface by one-step electrodeposition method for continuous oil/water separation. Appl Surf Sci 434:1015–1020

    Article  CAS  Google Scholar 

  35. Jiang C, Liu W, Sun Y, Liu C, Yang M, Wang Z (2019) Fabrication of durable superhydrophobic and superoleophilic cotton fabric with fluorinated silica sol via sol–gel process. J Appl Polym Sci 136(4):47005

    Article  CAS  Google Scholar 

  36. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22(18):1993–2027

    Article  CAS  PubMed  Google Scholar 

  37. Ozaydin-Ince G, Coclite AM, Gleason KK (2011) CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep Prog Phys 75 (1):016501

  38. Lau KK, Caulfield JA, Gleason KK (2000) Structure and morphology of fluorocarbon films grown by hot filament chemical vapor deposition. Chem Mater 12(10):3032–3037

    Article  CAS  Google Scholar 

  39. Gupta M, Gleason KK (2006) Initiated chemical vapor deposition of poly (1H, 1H, 2H, 2H-perfluorodecyl acrylate) thin films. Langmuir 22(24):10047–10052

    Article  CAS  PubMed  Google Scholar 

  40. Karaman M, Yenice E (2015) Plasma enhanced chemical vapor deposition of poly(2,2,3,4,4,4-hexafluorobutyl acrylate) thin films. Chem Vap Depos 21 (7–8–9):188–195

  41. Ozaydin-Ince G, Gleason KK (2009) Transition between kinetic and mass transfer regimes in the initiated chemical vapor deposition from ethylene glycol diacrylate. J Vac Sci Technol A: Vac Surf Films 27(5):1135–1143

    Article  CAS  Google Scholar 

  42. Riche CT, Marin BC, Malmstadt N, Gupta M (2011) Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices. Lab on a Chip 11(18):3049–3052

    Article  CAS  PubMed  Google Scholar 

  43. Karaman M, Çabuk N (2012) Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino) ethyl methacrylate thin films. Thin Solid Films 520(21):6484–6488

    Article  CAS  Google Scholar 

  44. Brown P, Atkinson O, Badyal J (2014) Ultrafast oleophobic–hydrophilic switching surfaces for antifogging, self-cleaning, and oil–water separation. ACS Appl Mater Interf 6(10):7504–7511

    Article  CAS  Google Scholar 

  45. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Elsevier

    Google Scholar 

  46. Szymanski HA (2013) Infrared band handbook: volume 1 4240–999 cm-1/volume 2 999–29 cm-1. Springer Science & Business Media

  47. Gunzler H, Gremlich H (2002) Qualitative spectral interpretation. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  48. Çıtak E, İstanbullu B, Şakalak H, Gürsoy M, Karaman M (2019) All-dry hydrophobic functionalization of paper surfaces for efficient transfer of CVD graphene. Macromol Chem Phys 220(22):1900277

    Article  CAS  Google Scholar 

  49. Şimşek B, Karaman M (2020) Initiated chemical vapor deposition of poly (hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces. J Coat Technol Res 17(2):381–391

    Article  CAS  Google Scholar 

Download references

Funding

The research leading to these results received funding from Scientific Research Council of Selcuk University under Grant Agreement No. BAP-12101019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Karaman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 22526 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayram, F., Mercan, E.S. & Karaman, M. One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil–water separation. Colloid Polym Sci 299, 1469–1477 (2021). https://doi.org/10.1007/s00396-021-04870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04870-1

Keywords

Navigation