Skip to main content

Advertisement

Log in

Secondary metabolite effects of different cocoa genotypes on feeding preference of the mirid Sahlbergella singularis Hagl

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Sahlbergella singularis is a major insect pest of cocoa in Cameroon. Conventional insecticides remain the most widely used option for mirid control, which unfortunately have adverse effects on the environment and human health. Improved methods of controlling this species, both environmentally friendly and inexpensive to farmers, are requirements. Varietal control based on the selection of resistant and/or tolerant genotypes can be an interesting approach. Nonetheless, the role of secondary metabolites (SMs) in cocoa defense against mirids is poorly documented; yet, these compounds are reported to be key elements in plant defense against herbivores. For this purpose, SMs of twelve cocoa genotypes were identified and quantified, as well as their impact on food preference by mirids. Food preference was assessed through microtests measuring cocoa attractiveness and antixenosis toward mirids. The results showed that cocoa genotypes were differently accepted as food by mirids, with a significant preference for hybrid IMC60 x SNK605 and a non-preference for T60/887. The ten other cocoa genotypes showed intermediate results. Five SMs classes: alkaloids, flavonoids, polyphenols, saponins, and tannins were identified. Their rates varied between cocoa genotypes: polyphenols > alkaloids > flavonoids > tannins, and saponins. Cocoa genotypes with high total phenolic contents were significantly preferred by S. singularis (rα = 0.86, R2 = 74.0%, P < 0.001), while those with low saponins contents were lowly accepted (rα = − 0.83, R2 = 68.9%, P < 0.015), independently of the levels of other SMs. Given SMs high potential to affect mirid feeding behavior, analyzing cocoa SMs composition may help in early selection of resistant cocoa varieties against S. singularis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adu-Acheampong R, Archer S, Leather S (2012) Resistance to dieback disease caused by Fusarium and Lasiodiplodia species in cacao (Theobroma cacao L.) genotypes. Exp Agric 48:85–98. https://doi.org/10.1017/S0014479711000883

    Article  Google Scholar 

  • Adu-Acheampong R, Jiggins J, van Huis A, Richmond Cudjoe A, Johnson V, Sakyi-Dawson O, Ofori Frimpong K, Osei-Fosu P, Tei-Quartey E, Jonfia-Essien W, Owusu-Manu M, Karikari Addo NMS, Afari-Mintah C, Amuzu M, NyarkoEku-XN QETN (2014) The cocoa mirid (Hemiptera: Miridae) problem: evidence to support new recommendations on the timing of insecticide application on cocoa in Ghana. Int J Trop Insect Sc 34:58–71

    Article  Google Scholar 

  • Aiyegoro OA, Okoh A (2010) Criblage phytochimique préliminaire et activités antioxydantes in vitro de l’extrait aqueux d’Helichrysum longifoliun. BMC Complement Altern Med 10:10–21. https://doi.org/10.1186/1472-6882-21

    Article  Google Scholar 

  • Alzoreky NS, Nakahara K (2003) Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int J Food Microbiol 80:223–230. https://doi.org/10.1016/s0168-1605(02)00169-1

    Article  CAS  PubMed  Google Scholar 

  • Ameyaw GA, Dzahini-Obiatey HK, Domfeh O (2014) Perspectives on cocoa swollen shoot virus disease (CSSVD) management in Ghana. Crop Prot 65:64–70. https://doi.org/10.1016/j.cropro.2014.07.001

    Article  Google Scholar 

  • Ameyaw GA, Chingandu N, Domfeh O, Dzahini-Obiatey HK, Gutierrez OA, Brown JK (2017) Variable detection of Cacao swollen shoots disease-associated badnaviruses by PCR amplification. In: International Symposium on Cocoa Research (ISCR), Lima, Peru, pp 1–9

  • Anikwe JC, Otuonye HA (2015) Dieback of cocoa (Theobroma cacao L.) plant tissues caused by the brown cocoa mirid Sahlbergella singularis Haglund (Hemiptera: Miridae) and associated pathogenic fungi. Int J Trop Insect Sc 35:193–200

    Article  Google Scholar 

  • Anikwe JC, Omoloye AA, Aikpokpodion PO, Okelana FA, Eskes AB (2009) Evaluation of resistance in selected cocoa genotypes to the brown cocoa mirid, Sahlbergella singularis Haglund in Nigeria. Crop Prot 28:350–355. https://doi.org/10.1016/j.cropro.2008.11.014

    Article  Google Scholar 

  • Anonymous (1997) Official methods of analysis. In: Helrich K (ed.), AOAC, Arlington

  • Ayenor GK, Roling N, van Huis A, Padi B, Obeng-Ofori D (2007) Assessing the effectiveness of a local agricultural research committee in diffusing sustainable cocoa production practices: the case of capsid control in Ghana. Int J Agric Sustain 5(2 & 3):109–123. https://doi.org/10.1080/14735903.2007.9684817

    Article  Google Scholar 

  • Babin R (2018) Pest management in organic farming. In: Vacante V, Kreiter S (eds) Handbook of pest management in organic farming. CAB-International, Wallingford, pp 502–518

    Chapter  Google Scholar 

  • Babin R, Sounigo O, Dibog L, Nyassé S, Eskes A (2005) Assessment of antixenosis and tolerance of cocoa (Theobroma cacao L.) towards mirids Sahlbergella singularis Hagl (Homoptera: Miridae). In: Njoya A, Havard M, Tanya VN, Tonyé J, Fohaom B, Nyassé S, Ngeve JM, Nounamo L (eds) La recherche agricole au service des acteurs du monde rural: recueil des résumés de la revue scientifiques de l’IRAD. Journées scientifiques de la recherche agricole, Yaoundé. IRAD, Garoua, p 33

    Google Scholar 

  • Babin R, Bisseleua DHB, Dibog L, Lumaret JP (2008) Rearing method and life-table data for the cocoa mirid bug Sahlbergella singularis Haglund (Hemiptera: Miridae). J Appl Entomol 132:366–374. https://doi.org/10.1111/j.1439-0418.2008.01273.x

    Article  Google Scholar 

  • Babin R, Ten Hoopen M, Cilas C, Enjalric F, Yede GP, Lumaret JP (2010) The impact of shade on the spatial distribution of Sahlbergella singularis Hagl. (Hemiptera: Miridae) in traditional cocoa agroforests. Agric for Entomol 12:69–79. https://doi.org/10.1111/j.1461-9563.2009.00453.x

    Article  Google Scholar 

  • Badegana AM, Amang J, Mpe JM (2004) Préférences alimentaires de Sahlbergella singularis Hagl. (Hemiptera: Miridae) vis-à-vis de quelques clones de cacaoyers (Theobroma cacao L.). Tropicultura 23:24–28

    Google Scholar 

  • Bagny Beilhe L, Babin R, Ten Hoppen M (2018a) Insect pests affecting cacao. In: Umahara P (ed) Achieving sustainable cultivation of cocoa. Burleigh Dodds Science Publishing, Cambridge, pp 3003–3326

    Google Scholar 

  • Bagny Beilhe L, Piou C, Tadu Z, Babin R (2018b) Identifying ant-mirid spatial interactions to improve biological control in cacao-based agroforestry system. Environ Entomol 47:551–558. https://doi.org/10.1093/ee/nvy018

    Article  PubMed  Google Scholar 

  • Bassogog CB, Bakepeck P, Nyobe C, Panyo’o E, Okella E, Edoun F (2020) Chemical composition, antioxidant, alpha-amylase inhibitory and functional properties of Cucumeropsis manni seeds protein concentrate. J Food Process Technol 11:826. https://doi.org/10.35248/2157-7110.20.11.826

    Article  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127(4):617–633

    Article  CAS  Google Scholar 

  • Bernal JS, Sétamou M (2003) Fortuitous antixenosis in transgenic sugarcane: antibiosis-expressing cultivar is refractory to ovipositing herbivore pests. Environ Entomol 32:886–894. https://doi.org/10.1603/0046-225x-32.4.886

    Article  Google Scholar 

  • Cilas C, Sounigo O, Mousseni Efombagn B, Nyassé S, Tahi M, Bharath SM (2018) Advances in pest—and disease-resistant cocoa varieties. In: Umaharan P (ed) Achieving sustainable cultivation of cocoa. Burleigh Dodds, Cambridge. https://doi.org/10.19103/AS.2017.0021.22

    Chapter  Google Scholar 

  • Cros E, Bastide P, N’Guyen-Ban J, Armengaud P (1996) Sensibilité du Cacaoyer aux mirides : Recherche de marqueurs Biochimiques. In Actes de la 12e conférence internationale sur la recherche cacaoyère. Salvador, Bahia, Brésil, pp 325–329

  • Dhanani T, Talapia S, Gajbhiye NA, Kumar S (2013) Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem. https://doi.org/10.1016/j.arabjc.2013.02.015

    Article  Google Scholar 

  • Dibog L, Babin R, Mbang JAA, Decazy B, Nyassé S, Cilas C, Eskes AB (2008) Effect of genotype of cocoa (Theobroma cacao) on attractiveness to the mired Sahlbergella singularis(Hemiptera: Miridae) in the laboratory. Pest Manag Sci 64:977–980. https://doi.org/10.1002/ps.1589

    Article  CAS  PubMed  Google Scholar 

  • Djeussi DE, Noumedem JAK, Seukep JA, Fankam AG, Voukeng IK, Tankeo SB, Nkuete AHL, Kuete V (2013) Antibacterial activities of selected edible plants extracts against multidrug-resistant gram-negative bacteria. BMC Compl Alt Med 13:164. https://doi.org/10.1186/1472-6882-13-164

    Article  Google Scholar 

  • Djouahra D (2012) Alcaloïdes et polyphénols d’Haplophyllum tuberculatum (Forsk): effet antimicrobien et antioxydant. Mémoire de magister, Université Akli Mohand Oulhadj, Algérie, pp 22–23

  • Domfeh O, Ameyaw GA, Dzahini-Obiatey HK, Ollennu LAA, Osei-Bonsu K, Acheampong K, Owusu-Ansah F (2016) Use of immune crops as barrier in the management of cacao swollen shoot virus disease (CSSVD)—long-term assessment. Plant Dis 100:1889–1893. https://doi.org/10.1094/pdis-03-16-0404-re

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Kliebenstein D (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184:39–52

    Article  CAS  Google Scholar 

  • Fuenzalida T (2015) Plant natural defense against insects: role of secondary metabolites. Seminario de Título. Pontificia Universidad Católica de Chile Facultad de Agronomía e Ingeniería Forestal Departamento de Ciencias Vegetales AGL300, Santiago, Chile, pp 1–25

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liirah J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Onate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105. https://doi.org/10.1016/j.baae.2009.12.001

    Article  CAS  Google Scholar 

  • Gidoin C, Babin R, Bagny Beilhe L, Cilas C, Ten Hoopen GM, Bieng MA (2014) Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon. PLoS ONE 9(10):e109405. https://doi.org/10.1371/journal.pone.0109405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque MM, Rafiq K, Sherajee SJ, Ahmed S, Hasan Q, Mostafa M (2003) Treatement of external wounds by using indigenous medicinal plants and patent drugs in Guinea Pigs. J Biol Sci 3:1126–1133

    Article  Google Scholar 

  • Hassan Adeyemi MM (2010) The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr J Pure Appl Chem 4:243–246

    Google Scholar 

  • Hiai S, Oura H, Nakajima T (1976) Color reaction of some sapogenins and saponinswith vanillin and sulfuric acid. Planta Med 29:116–122. https://doi.org/10.1055/s-0028-1097639

    Article  CAS  PubMed  Google Scholar 

  • Hii CL, Law CL, Suzannah S, Misnawi CM (2009) Polyphenols in cocoa (Theobroma cacao L.). Asian J Food Agro Ind 2:702–722

    Google Scholar 

  • Hilaly EJ, Israili ZH, Lyoussi B (2004) Acute and chronic toxicological studies of Ajugaiva in experimental animals. J Ethnopharmacol 91:43–50. https://doi.org/10.1016/j.jep.2003.11.009

    Article  PubMed  Google Scholar 

  • Humann-Guilleminot S, Bnikowski LJ, Jenni L, Hilke G, Glauser G, Helfenstein F (2019) A nation wide survey of neonicotinoid insecticides in agricultural land with implications for agri environment scheme. J Appl Ecol 00:1–13. https://doi.org/10.1111/1365-2664.13392

    Article  CAS  Google Scholar 

  • International Cocoa Organization (ICCO) (2013) Annual Report 2012/2103. ICCO, London

    Google Scholar 

  • Julkunen-titt R (1985) Phenolic constituents in the leaves of northern wiliows method for the analysis of certain phenolics. J Agric Food Chem 33:213–217. https://doi.org/10.1021/jf00062a013

    Article  Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological classification, function and pharmacological properties. J Pharm Pharmacol 2:393–403. https://doi.org/10.4236/jsemat.2015.52009

    Article  Google Scholar 

  • Kariñho-Betancourt E (2018) Plant-herbivore interactions and secondary metabolites of plants: ecological and evolutionary perspectives. Bot Sci 96:35–51. https://doi.org/10.17129/botsci.1860

    Article  Google Scholar 

  • Kessler A (2006) Plant–insect interactions in the era of consolidation in biological sciences. In: Dicke M, Takken W (eds) Chemical ecology: from gene to ecosystem. Springer, Dordrecht, pp 19–37

    Chapter  Google Scholar 

  • Krief S (2003) Métabolites secondaires des plantes et comportement animal: surveillance sanitaire et observations de l’alimentation des chimpanzés (Pan troglodytes schweinfurthii) en Ouganda. Activités biologiques et étude chimique de plantes consommées. Sciences du Vivant [q-bio]. Thèse de Doctorat, Museum national d’histoire naturelle—MNHN, Paris, France

  • Mahob RJ, Babin R, Ten Hoopen GM, Dibog L, Yede HDR, Bilong Bilong CF (2011) Field evaluation of synthetic sex pheromone traps for the cocoa mirid Sahlbergella singularis (Hemiptera: Miridae). Pest Manag Sci 67:672–676. https://doi.org/10.1002/ps.2107

    Article  CAS  PubMed  Google Scholar 

  • Mahob RJ, Ndoumbe-Nkeng M, Ten Hoopen GM, Dibog L, Nyassé S, Rutherford M, BilongBilong CF (2014) Pesticides use in cocoa sector in Cameroon: characterization of supply source, nature of actives ingredients, fashion and reasons for their utilization. Int J Bio Chem Sci 8:1976–1989. https://doi.org/10.4314/ijbcs.v8i5.3

    Article  CAS  Google Scholar 

  • Mahob RJ, Baleba L, Yede, Dibog L, Cilas C, Bilong Bilong CF, Babin R (2015) Spatial distribution of Sahlbergella singularis Hagl. (Hemiptera: Miridae) populations and their damage in unshaded young cacao-based agroforestry systems. Int J Plant Anim Environ Sci 5:121–131

    Google Scholar 

  • Mahob RJ, FeudjoThiomela R, Dibog L, Babin R, Fotso Toguem YG, Mahot H, Baleba L, Owona Dongo PA, Bilong Bilong CF (2019) Field evaluation of the impact of Sahlbergella singularis Haglund infestations on the productivity of different Theobroma cacao L. genotypes in Southern Cameroon. J Plant Dis Protect 126:203–210. https://doi.org/10.1007/s41348-019-00221-z

    Article  Google Scholar 

  • Mahob RJ, Dibog L, Ndoumbe-Nkeng M, Begoude Boyogueno AD, Fotso Toguem YG, Mahot H, Nyasse S, Bilong Bilong CF (2020) Field assessment of the impact of farmers’ practices and cacao growing environment on mirid abundance and their damage under unshaded conditions in the southern Cameroon. Int J Trop Insect Sci. https://doi.org/10.1007/s42690-020-00124-9

    Article  Google Scholar 

  • Mahot HC, Membang G, Hanna R, Begoude BAD, Bagny Beilhe L, Bilong BCF (2019) Laboratory assessment of virulence of Cameroonian isolates of Beauveria bassiana 445 and Metarhizium anisopliae against mirid bugs Sahlbergella singularis Haglund (Hemiptera: Miridae). Afr Entomol 27:86–96. https://doi.org/10.4001/003.027.0086

    Article  Google Scholar 

  • Mahot HC, Mahob RJ, Hall DR, Arnold SEJ, Fotso KA, Membang G, Ewane N, Kemga A, Fiaboe Komi KM, Bilong Bilong CF, Hanna R (2020) Visual cues from different trap colours affect catches of Sahlbergella singularis (Hemiptera: Miridae) in sex pheromone traps in Cameroon cocoa plantations. Crop Prot 127:104959. https://doi.org/10.1016/j.cropro.2019.104959

    Article  CAS  Google Scholar 

  • Mariau D (1999) Integrated pest management of tropical perennial crops. Science Publishers Inc, Boca Raton

    Google Scholar 

  • Mbondji PM (2010) Le cacaoyer au Cameroun. Presse de l’Université Catholique d’Afrique Centrale, Yaoundé, p 254

    Google Scholar 

  • Mboussi SB, Ambang Z, Kakam S, Bagny Beilhe L (2018) Control of cocoa mirids using aqueous extracts of Thevetia peruviana and Azadirachta indica. Cogent Food Agric 4:1430470. https://doi.org/10.1080/23311932.2018.1430470

    Article  Google Scholar 

  • Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GAG (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Mol Plant Pathol 9:577–588. https://doi.org/10.1111/j.1364-3703.2008.00496

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Ann Rev Plant Biol 63:431–450. https://doi.org/10.1146/annurev-arplant-042110-10-3854

    Article  Google Scholar 

  • Morrison WR III, Grosdidier RF, Arthur FH, Myers SW, Domingue MJ (2019) Attraction, arrestment, and preference by immature Trogoderma variabile and Trogoderma granarium to food and pheromonal stimuli. J Pest Sci. https://doi.org/10.1007/s10340-019-01171-z

    Article  Google Scholar 

  • N’Guessan KE, N’Goran JAK, Eskes AB (2008) Resistance of cacao (Theobroma cacao L.) to Sahlbergella singularis (Hemiptera: Miridae): investigation of antixenosis, antibiosis and tolerance. Int J Trop Insect Sci 28:201–210. https://doi.org/10.1017/S1742758408184740

    Article  Google Scholar 

  • N’Guessan KF, Lachenaud PHh, Eskes AB (2010) Antixenosis as a mechanism of cocoa resistance to the cocoa mirid, Sahlbergella singularis (Hemiptera: Miridae). J Appl Biosci 36:2333–2339

    Google Scholar 

  • Nguyen-Ban J (1998) Nouvelle technique de criblage et de sélection des cacaoyers pour la résistance aux mirides. Int J Trop Insect Sci 18:119–127. https://doi.org/10.1017/S174275840000775X

    Article  Google Scholar 

  • Nwokonkwo DC (2009) Phytochemical analysis of the seeds of Napoleona imperialis. J ChemSoc Nigeria 34:174–176

    CAS  Google Scholar 

  • Nwokonkwo DC, Okeke GN (2014) The chemical constituents and biological activities of stem bark extract of Theobroma cacao. Glob J Sci Front Res 14:2249–4626

    Google Scholar 

  • Pagare S, Bhatia M, Tripathi N, Bansal YK (2015) Secondary metabolites of plants and their role: Overview. Curr Trends Biotechnol Pharm 9:293–304

    Google Scholar 

  • Pickett JA, Smiley DWM, Woodcock CM (1999) Secondary metabolites in plant-insect interactions: dynamic systems of induced and adaptive responses. Adv Bot Res 30:91–115

    Article  CAS  Google Scholar 

  • Rafińska K, Pomastowski P, Wrona O, Górecki R, Buszewski B (2017) Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochem Lett 20:520–539

    Article  Google Scholar 

  • Sarfo JE, Campbell CAM, Hall DR (2018a) Design and placement of synthetic sex pheromone traps for cacao mirids in Ghana. Int J Trop Insect Sc 38:122–131. https://doi.org/10.1017/S1742758417000340

    Article  Google Scholar 

  • Sarfo JE, Campbell CAM, Hall DR (2018b) Optimal pheromone trap density for mass trapping cacao mirids. Entomol Exp Appl 166:565–573. https://doi.org/10.1111/eea.12699

    Article  CAS  Google Scholar 

  • Sarfo JE (2013) Behavioural response of cocoa mirids, Sahlbergella singularis Hagl. and Distantiella theobroma Dist. (Heteroptera: Miridae) to sex pheromones. Thesis, Degree of Doctor of Philosophy, University of Greenwich, UK

  • Savithramma N, Rao ML, Suhrulatha D (2011) Screening of medicinal plants for secondary metabolites. Middle-East J Sci Res 8:579–584

    Google Scholar 

  • Sharma HC, Ortiz R (2002) Host plant resistance to insects: an eco-friendly approach for pest management and environment conservation. J Envriron Biol 23:111–135

    CAS  Google Scholar 

  • Singh DK, Srivastava B, Sahu A (2004) Spectrophotometric determination of Rauwolfia alkaloids: Estimation of Reserpine in pharmaceuticals. Anal Sci 20:571–573

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol 299:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  • Sounigo O, Coulibaly N, Brun L, N’Goran JAK, Cilas C, Eskes AB (2003) Evaluation of resistance of Theobroma cacao L. to mirids in Côte d’Ivoire: results of comparative progeny trials. Crop Prot 22:615–621. https://doi.org/10.1016/S0261-2194(02)00244-2

    Article  Google Scholar 

  • Sounigo O, Efombagn B, Lemainque A et al. (2012) Association mapping on cocoa: a way to identify functional SSR markers linked to yield, tolerance to black pod and mirids assessed in Cameroon and develop a marker assisted breeding programme. In: Proc of the 16th Int Cocoa Res Conf, Bali, 16–21 November 2009. COPAL, Lagos, pp 153–158

  • Stenoien CM, Meyer RA, Nail KR, Zalucki MP, Oberhauser KS (2019) Does chemistry make a difference? Milkweed butterfly sequestered cardenolides as a defense against parasitoid wasps. Arth-Plant Int 13:835–852. https://doi.org/10.1007/s11829-019-09719-7

    Article  Google Scholar 

  • Subhashini R, Mahadeva Rao US, Sumathi P, Gayathri G (2010) A comparative phytochemical analysis of cocoa and green tea. Indian J SciTechnol 3:188–192. https://doi.org/10.17485/ijst/2010/v3i2/29676

    Article  CAS  Google Scholar 

  • Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ferré J (1998) Insect resistance to Bacillus thuringiensis: uniform or diverse? Philos Trans R Soc Lond 353:1751–1756. https://doi.org/10.1098/rstb.1998.0327

    Article  Google Scholar 

  • Tadu Z, Babin R, Aléné CD, Yede M-Y, Dekonick W, Djiéto-Lordon C (2019) Ant assemblage structure on cocoa trees in smallholder farms in the Centre Region of Cameroon. Afr J Ecol 00:1–11. https://doi.org/10.1111/aje.12631

    Article  Google Scholar 

  • Tamayo MC, Rufat M, Bravo JM, San Segundo B (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71. https://doi.org/10.1007/s004250000258

    Article  CAS  PubMed  Google Scholar 

  • Thomas F, Guégan JF, Renaud F (2012) Ecologie et évolution des systèmes parasités, 2nd edn. De Boeck Group, Brussels

    Google Scholar 

  • Toledo-Hernandes WTC, Tscharntke T (2017) Neglected pollinators: can enhanced pollination services improve cocoa yields? A review. Agric Ecosyst Environ 247:137–148. https://doi.org/10.1016/j.agee.2017.05.021

    Article  Google Scholar 

  • Voula VA, Manga EF, Messi AL, Mahob JR, Begoude BA (2018) Impact of mirids and fungal infestation on dieback of cocoa in Cameroon. J Entomol Zool Stud 6:240–245

    Google Scholar 

  • Webster JA, Inayatullah C (1988) Assessment of experimental designs for green bug (Homoptera: Aphididae) antixenosis tests. J Econ Entomol 81:1246–1250. https://doi.org/10.1093/jee/81.4.1246

    Article  Google Scholar 

  • Wessel M, Quist-Wessel PMF (2015) Cocoa production in West Africa, a review and analysis of recent developments. NJAS 74–75:1–7. https://doi.org/10.1016/j.njas.2015.09.001

    Article  Google Scholar 

  • Wink M (2016) Secondary metabolites: deterring herbivores. eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0000918.pub3

    Chapter  Google Scholar 

  • Yasri A, Kouisni L, Naboulsi I, Aboulmouhajir A, Faouzi B (2018) Plants extracts and secondary metabolites, their extraction methods and use in agriculture for controlling crop stresses and improving productivity: a review. Acad J Med Plants 6:223–240. https://doi.org/10.15413/ajmp.2018.0139

    Article  Google Scholar 

  • Yede, Babin R, Djieto-Lordon C, Cilas C, Dibog L, Mahob R, Bilong Bilong CF (2012) True bug (Heteroptera) impact on cocoa fruit mortality and productivity. J Econ Entomol 105:1285–1292. https://doi.org/10.1603/EC12022

    Article  CAS  PubMed  Google Scholar 

  • Yede (2016) Diversité des peuplements des hémiptères dans les cacaoyères de la Région du Centre Cameroun : impact économique et essai de lutte biologique. Thèse de Doctorat PhD, Université de Yaoundén I, Yaoundé

Download references

Acknowledgements

This study was funded by the public investment funds of Cameroon through the presidential allowance to the modernization of research. We thank Food and Nutrition Research Center of the Institute of Medical Research and Study of Medicinal Plants for logistic and lab products/reagents. We are also grateful to the Research Station of IRAD-Nkoemvone, especially Mr Damien EYENET and Laurent BALEBA, Technician and Station Manager respectively, for their collaboration during the field data collection phase related to the genetic origins of the tested cocoa genotypes. We also thank Dr Njua Clarisse, Senior Lecturer at the Faculty of Science of the University of Yaoundé I, and Dr Ayuk Tambe Bertrand, Lecturer at the Faculty of Health Sciences of the University of Buea, for their contributions in the English proofreading.

Author information

Authors and Affiliations

Authors

Contributions

RJM, CFBB, and RH: Conceived and planned the study; RJM, IMN, RFD, CHM, CBB, FEE, PBNE, and DT: Designed and performed the experiments in both field and laboratory; RJM, CFBB, and RH: Discussed on the statistical methods and performed statistical analysis; RJM, RFD, CFBB, RH, and RB: Wrote the manuscript.

Corresponding author

Correspondence to R. J. Mahob.

Ethics declarations

Conflict of interest

This work does not present any conflict of interest.

Consent for publication

All authors agree that the manuscript be published for the benefit of the scientific community and/or sympathizers and other actors in the cocoa sector.

Additional information

Handling Editor: Kerry Mauck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahob, R.J., Ngah, I.M., Feumba, R.D. et al. Secondary metabolite effects of different cocoa genotypes on feeding preference of the mirid Sahlbergella singularis Hagl. Arthropod-Plant Interactions 15, 821–831 (2021). https://doi.org/10.1007/s11829-021-09857-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-021-09857-x

Keywords

Navigation