Skip to main content

Advertisement

Log in

CNN-based demodulation for a complex amplitude modulation code in holographic data storage

  • Special Section: Regular Paper
  • International Symposium on Imaging, Sensing, and Optical Memory (ISOM ’20), Takamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We developed a modulation code using a complex amplitude and established a method to demodulate the code based on a convolutional neural network (CNN) for holographic data storage. The developed 20:9 modulation code consists of nine symbols, each of which contains 4 bits of data representing the symbol position on which the complex amplitude is superimposed and 16 bits of data representing the actual complex amplitude value. By solving an optimization problem, the complex amplitude signal combines four amplitude values and a different phase value for each amplitude; thus, the data are robust against amplitude and phase noise, and the amplitude and phase values are distributed over a uniform distance in the constellation diagram. Modulation tables were also optimized using a genetic algorithm. Because the occurrence of bit errors due to amplitude and phase noise must be considered when reproducing data, two CNNs separately demodulate the symbol position signal and the complex amplitude signal superimposed thereon. By inputting reproduced data and label information indicating the demodulation target, we created a compact CNN. We confirmed that the CNN demodulation can accurately demodulate both signals; moreover, the total bit errors were reduced to less than half of those for the conventional hard decision demodulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ushiyama, Z., Kurata, H., Tsukamoto, Y., Yoshida, S., Yamamoto, M.: Shift-peristrophic multiplexing for high density holographic data storage. Appl. Sci. (2014). https://doi.org/10.3390/app4020148

    Article  Google Scholar 

  2. Ayres, M., Anderson, K., Askham, F., Sissom, B., Urness, A.: Multi-terabit/in2 holographic data storage demonstration, vol. 9587. SPIE Optical Engineering + Applications (2015)

    Google Scholar 

  3. Hoshizawa, T., Shimada, K., Fujita, K., Tada, Y.: Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate. Jpn. J. Appl. Phys. (2016). https://doi.org/10.7567/jjap.55.09sa06

    Article  Google Scholar 

  4. Nobukawa, T., Nomura, T.: Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography. Opt. Express 24(18), 21001–21011 (2016). https://doi.org/10.1364/OE.24.021001

    Article  ADS  Google Scholar 

  5. Bunsen, M., Tateyama, S.: Detection method for the complex amplitude of a signal beam with intensity and phase modulation using the transport of intensity equation for holographic data storage. Opt. Express 27(17), 24029–24042 (2019). https://doi.org/10.1364/OE.27.024029

    Article  ADS  Google Scholar 

  6. Honma, S., Funakoshi, H.: A two-step exposure method with interleaved phase pages for recording of SQAM signal in holographic memory. Jpn. J. Appl. Phys. (2019). https://doi.org/10.7567/1347-4065/ab2be1

    Article  Google Scholar 

  7. Nakamura, Y., Hoshizawa, T.: Two high-density recording methods with run-length limited turbo code for holographic data storage system. Jpn. J. Appl. Phys. (2016). https://doi.org/10.7567/jjap.55.09sa01

    Article  Google Scholar 

  8. Hesselink, L., Orlov, S.S., Bashaw, M.C.: Holographic data storage systems. Proc. IEEE 92(8), 1231–1280 (2004). https://doi.org/10.1109/jproc.2004.831212

    Article  Google Scholar 

  9. Shimobaba, T., Kuwata, N., Homma, M., Takahashi, T., Nagahama, Y., Sano, M., Hasegawa, S., Hirayama, R., Kakue, T., Shiraki, A., Takada, N., Ito, T.: Convolutional neural network-based data page classification for holographic memory. Appl. Opt. 56(26), 7327–7330 (2017). https://doi.org/10.1364/AO.56.007327

    Article  ADS  Google Scholar 

  10. Katano, Y., Muroi, T., Kinoshita, N., Ishii, N., Hayashi, N.: Data demodulation using convolutional neural networks for holographic data storage. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/jjap.57.09sc01

    Article  Google Scholar 

  11. Katano, Y., Muroi, T., Kinoshita, N., Ishii, N.: Demodulation of multi-level data using convolutional neural network in holographic data storage. In: 2018 Digital image computing: techniques and applications (DICTA), 10–13, pp. 1–5 (2018)

  12. Awatsuji, Y., Fujii, A., Kubota, T., Matoba, O.: Parallel three-step phase-shifting digital holography. Appl. Opt. 45(13), 2995–3002 (2006). https://doi.org/10.1364/AO.45.002995

    Article  ADS  Google Scholar 

  13. He, M., Cao, L., Tan, Q., He, Q., Jin, G.: Novel phase detection method for a holographic data storage system using two interferograms. J. Opt. A: Pure Appl. Opt. 11(6), 065705 (2009). https://doi.org/10.1088/1464-4258/11/6/065705

    Article  ADS  Google Scholar 

  14. Liu, J., Horimai, H., Lin, X., Huang, Y., Tan, X.: Phase modulated high density collinear holographic data storage system with phase-retrieval reference beam locking and orthogonal reference encoding. Opt. Express 26(4), 3828–3838 (2018). https://doi.org/10.1364/OE.26.003828

    Article  ADS  Google Scholar 

  15. Kinoshita, N., Katano, Y., Nobukawa, T., Muroi, T., Ishii, N.: Improvement of signal quality for multi-level amplitude modulation in holographic data storage. In: Shimura, T. (ed.) International symposium on imaging, sensing, and optical memory, pp. 67–68 (2019)

  16. Fletcher, R.: Practical methods of optimization, 2nd edn. A Wiley-Interscience publication, Wiley (2000)

    Book  Google Scholar 

  17. Goto, Y., Okamoto, A., Takabayashi, M., Ogawa, K., Tomita, A.: Experimental implementation of multiplexing/demultiplexing in digital images using virtual phase conjugation for holographic data storage. Opt. Rev. 25(5), 549–554 (2018). https://doi.org/10.1007/s10043-018-0446-z

    Article  Google Scholar 

  18. Yoneda, N., Saita, Y., Komuro, K., Nobukawa, T., Nomura, T.: Transport-of-intensity holographic data storage based on a computer-generated hologram. Appl. Opt. 57(30), 8836–8840 (2018). https://doi.org/10.1364/AO.57.008836

    Article  ADS  Google Scholar 

  19. Ishii, N., Katano, Y., Muroi, T., Kinoshita, N.: 10:9 modulation code for multi-level recording and error correction method using spatially coupled LDPC in HDS. In: Shimura, T. (ed.) International symposium on imaging, sensing, and optical memory, pp. 149–150 (2019)

  20. Goldberg, D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem. In: Grefenstette, J.J. (ed.) Proceedings of an international conference on genetic algorithms and their applications 1985, pp. 154–159. Lawrence Erlbaum Hillsdale, NJ

  21. Kurokawa, S., Yoshida, S.: Convolutional neural network based demodulation for constant-weight codes in holographic data storage. In: Shimura, T. (ed.) International symposium on imaging, sensing, and optical memory, pp. 67–68 (2020)

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  ADS  Google Scholar 

  23. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning 2013, vol. 1

  24. Muroi, T., Katano, Y., Kinoshita, N., Ishii, N.: Spatial filter and combination of angle and peristrophic multiplexings to achieve recording density of 1 Tbit/inch2 in holographic data storage. ITE Trans. Media Technol. Appl. 9(3), 153–160 (2021). https://doi.org/10.3169/mta.9.153

    Article  Google Scholar 

  25. Katano, Y., Nobukawa, T., Muroi, T., Kinoshita, N., Ishii, N.: Efficient decoding method for holographic data storage combining convolutional neural network and spatially coupled low-density parity-check code. ITE Trans. Media Technol. Appl. 9(3), 161–168 (2021). https://doi.org/10.3169/mta.9.161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaro Katano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katano, Y., Nobukawa, T., Muroi, T. et al. CNN-based demodulation for a complex amplitude modulation code in holographic data storage. Opt Rev 28, 662–672 (2021). https://doi.org/10.1007/s10043-021-00687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00687-z

Keywords

Navigation