Skip to main content

Advertisement

Log in

Thermoelectric properties of the hexagonal- and square-shaped monolayers of ZnO

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Two-dimensional thermoelectric materials have been extensively explored in recent years for their potential to recycle waste heat into clean energy. Herein, we investigate the thermoelectric properties of hexagonal- and square-shaped monolayers of ZnO for renewable energy applications. These monolayers have been originated from the 110- and 011-facets of β-BeO type structured ZnO (β-BeO-ZnO). To execute this study, the electronic structures of these monolayers have been obtained within the framework of density functional theory (DFT). The results of electronic structures have been used to obtain the thermoelectric properties against chemical potential and temperature using the semi-classical Boltzmann transport theory (BTT). The high electrical conductivities and substantial Seebeck coefficient equivalent to 1500 μV/K have been recorded for 110-monolayer and 2716.75 μV/K for 011-monolayer. As a result, large thermoelectric power factors (PF) of magnitude 7.96 × 1010 W/mK2s at  0.49 eV for 110- monolayer and 4.63 × 1010 W/mK2s at  1.83 eV recorded for 011-monolayer. The PF of these monolayers has experienced a linear increase with the rise in temperature. Moreover, the thermoelectric figure-of-merit (zT) values have been recorded as ~ 1.02 and ~ 1 for 110- and 011-monolayer. The zT of 011-monolayer has been found to decrease for an increase in temperature beyond 450 K whereas zT of 110-monolayer has been found insensitive to change in temperature. This reveals the potential of ZnO monolayers (110-monolayer in particular) for applications in high-temperature thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 8, 471 (2013)

    Article  ADS  Google Scholar 

  2. C.B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009)

    Article  ADS  Google Scholar 

  3. Y. Pei, A.D. LaLonde, H. Wang, G.J. Snyder, Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 5, 7963–7969 (2012)

    Article  Google Scholar 

  4. S. Jantrasee, P. Moontragoon, S. Pinitsoontorn, Thermoelectric properties of Al-doped ZnO: experiment and simulation. J. Semicond. 37, 092002 (2016)

    Article  ADS  Google Scholar 

  5. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, High-temperature thermoelectric properties of (Zn1− x Al x) O. J. Appl. Phys. 79, 1816–1818 (1996)

    Article  ADS  Google Scholar 

  6. P. Jood, R.J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R.W. Siegel, T. Borca-Tasciuc, S.X. Dou, G. Ramanath, Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 11, 4337–4342 (2011)

    Article  ADS  Google Scholar 

  7. L. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  8. M.G. Kanatzidis, Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 22, 648–659 (2010)

    Article  Google Scholar 

  9. Y. Xiao, L.-D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 3, 1–12 (2018)

    Article  ADS  Google Scholar 

  10. C. Wang, Y. Wang, G. Zhang, C. Peng, G. Yang, Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires. Phys. Chem. Chem. Phys. 16, 3771–3776 (2014)

    Article  Google Scholar 

  11. D. Misra, A. Bhardwaj, S. Singh, Enhanced thermoelectric performance of a new half-Heusler derivative Zr 9 Ni 7 Sn 8 bulk nanocomposite: enhanced electrical conductivity and low thermal conductivity. J. Mater. Chem. A 2, 11913–11921 (2014)

    Article  Google Scholar 

  12. B.U. Haq, S. AlFaify, A. Laref, Design and characterization of novel polymorphs of single-layered tin-sulfide for direction-dependent thermoelectric applications using first-principles approaches. Phys. Chem. Chem. Phys. 21, 4624–4632 (2019)

    Article  Google Scholar 

  13. B. UlHaq, S. AlFaify, A. Laref, Exploring novel flat-band polymorphs of single-layered Germanium Sulfide for high-efficiency thermoelectric applications. J. Phys. Chem. C 123, 18124–18131 (2019)

    Article  Google Scholar 

  14. B.U. Haq, S. AlFaify, A. Laref, R. Ahmed, M. Taib, Dimensionality reduction of germanium selenide for high-efficiency thermoelectric applications. Ceram. Int. 45, 15122–15127 (2019)

    Article  Google Scholar 

  15. B.U. Haq, S. AlFaify, T. Alshahrani, R. Ahmed, F.K. Butt, S.U. Rehman, Z. Tariq, Devising square-and hexagonal-shaped monolayers of ZnO for nanoscale electronic and optoelectronic applications. Sol. Energy 211, 920–927 (2020)

    Article  ADS  Google Scholar 

  16. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    Article  ADS  Google Scholar 

  17. Z.-Y. Hu, K.-Y. Li, Y. Lu, Y. Huang, X.-H. Shao, High thermoelectric performances of monolayer SnSe allotropes. Nanoscale 9, 16093–16100 (2017)

    Article  Google Scholar 

  18. S. Singh, M.N. Tripathi, Enhanced optoelectronic property of ZnO under negative pressure condition: a first-principles study. Mater. Res. Express 3, 086301 (2016)

    Article  ADS  Google Scholar 

  19. W. Sangthong, J. Limtrakul, F. Illas, S.T. Bromley, Predicting transition pressures for obtaining nanoporous semiconductor polymorphs: oxides and chalcogenides of Zn, Cd and Mg. Phys. Chem. Chem. Phys. 12, 8513–8520 (2010)

    Article  Google Scholar 

  20. D. Zagorac, J. Schön, J. Zagorac, M. Jansen, Prediction of structure candidates for zinc oxide as a function of pressure and investigation of their electronic properties. Phys. Rev. B 89, 075201 (2014)

    Article  ADS  Google Scholar 

  21. B.J. Morgan, First-principles study of epitaxial strain as a method of B 4→ B C T stabilization in ZnO, ZnS, and CdS,. Phys. Rev. B 82, 153408 (2010)

    Article  ADS  Google Scholar 

  22. J. Wang, P. Xiao, M. Zhou, Z. Wang, F. Ke, Wurtzite-to-tetragonal structure phase transformation and size effect in ZnO nanorods. J. Appl. Phys. 107, 023512 (2010)

    Article  ADS  Google Scholar 

  23. S. Shabbir, A. Shaari, B.U. Haq, R. Ahmed, M. Ahmed, Investigations of novel polymorphs of ZnO for optoelectronic applications. Optik 206, 164285 (2020)

    Article  ADS  Google Scholar 

  24. B.U. Haq, R. Ahmed, A. Shaari, F.E.H. Hassan, M.B. Kanoun, S. Goumri-Said, Study of wurtzite and zincblende GaN/InN based solar cells alloys: first-principles investigation within the improved modified Becke-Johnson potential. Sol. Energy 107, 543–552 (2014)

    Article  ADS  Google Scholar 

  25. B.U. Haq, A. Afaq, G. Abdellatif, R. Ahmed, S. Naseem, R. Khenata, First principles study of scandium nitride and yttrium nitride alloy system: prospective material for optoelectronics. Superlattices Microstruct. 85, 24–33 (2015)

    Article  ADS  Google Scholar 

  26. B.U. Haq, M.B. Kanoun, R. Ahmed, M. Bououdina, S. Goumri-Said, Hybrid functional calculations of potential hydrogen storage material: complex dimagnesium iron hydride. Int. J. Hydrogen Energy 39, 9709–9717 (2014)

    Article  Google Scholar 

  27. B. UlHaq, R. Ahmed, S. Goumri-Said, A. Shaari, A. Afaq, Electronic structure engineering of ZnO with the modified Becke-Johnson exchange versus the classical correlation potential approaches. Phase Trans. 86, 1167–1177 (2013)

    Article  Google Scholar 

  28. B.U. Haq, R. Ahmed, S. Goumri-Said, DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications. Sol. Energy Mater Sol. Cells 130, 6–14 (2014)

    Article  Google Scholar 

  29. B.U. Haq, R. Ahmed, J.Y. Rhee, A. Shaari, S. AlFaify, M. Ahmed, Composition-induced influence on the electronic band structure, optical and thermoelectric coefficients of the highly mismatched GaNSb alloy over the entire range: a DFT analysis. J Alloys Compd. 693, 1020–1027 (2017)

    Article  Google Scholar 

  30. B.U. Haq, R. Ahmed, M. Mohamad, A. Shaari, J. Rhee, S. AlFaify, M.B. Kanoun, S. Goumri-Said, Engineering of highly mismatched alloy with semiconductor and semi-metallic substituent’s for photovoltaic applications. Curr. Appl. Phys. 17, 162–168 (2017)

    Article  ADS  Google Scholar 

  31. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83, 195134 (2011)

    Article  ADS  Google Scholar 

  32. D. Koller, F. Tran, P. Blaha, Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85, 155109 (2012)

    Article  ADS  Google Scholar 

  33. F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke-Johnson exchange potential. J. Phys. Condensed Matter 19, 196208 (2007)

    Article  ADS  Google Scholar 

  34. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (Vienna University of Technology, Austria, 2001)

  35. G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  36. P. Sikam, C. Sararat, P. Moontragoon, T. Kaewmaraya, S. Maensiri, Enhanced thermoelectric properties of N-doped ZnO and SrTiO3: a first-principles study. Appl. Surf. Sci. 446, 47–58 (2018)

    Article  ADS  Google Scholar 

  37. B.U. Haq, S. AlFaify, T. Alshahrani, R. Ahmed, Q. Mahmood, D. Hoat, S. Tahir, Investigations of thermoelectric properties of ZnO monolayers from the first-principles approach. Phys. E Low-dimensional Syst. Nanostruct. 126, 114444 (2021)

    Article  Google Scholar 

  38. B.U. Haq, First-principles calculations to investigate thermoelectric properties of new monolayers of ZnO. Optik 238, 166782 (2021)

    Article  ADS  Google Scholar 

  39. B.U. Haq, S. AlFaify, T. Al-shahrani, S. Al-Qaisi, R. Ahmed, A. Laref, S. Tahir, First-principles investigations of ZnO monolayers derived from zinc-blende and 5–5 phases for advanced thermoelectric applications. J. Phys. Chem. Solids 149, 109780 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the General Research Program under Grant No. G.R.P/67/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhtiar Ul Haq.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 426 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Haq, B., AlFaify, S. & Ahmed, R. Thermoelectric properties of the hexagonal- and square-shaped monolayers of ZnO. Eur. Phys. J. Plus 136, 794 (2021). https://doi.org/10.1140/epjp/s13360-021-01777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01777-2

Navigation