Skip to main content
Log in

Study of the colossal dielectric response in LaFe1−xZnxO3−δ perovskites

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper investigates the impedance and dielectric properties of lead free perovskites LaFe1−xZnxO3−δ. For this purpose, we have analyzed the impact of substitution (0 ≤ x ≤ 0.15), temperature (350 to 800 °C) and frequency (5 Hz to 13 MHz) on the electric properties of the pristine LaFeO3. Impedance analyses revealed the existence of two conduction mechanisms. Furthermore, the substitution improved the dielectric properties of lanthanum ferrite. Indeed, \(\varepsilon^{\prime }\) was greatly enhanced after substitution. The colossal \(\varepsilon^{\prime }\) values would certainly encourage the use of the perovskite in nonlinear optical applications and frequency multipliers. Otherwise, low dielectric losses were obtained at high frequencies resulting in low penetration depth. This finding confers to ferrites potential applications as high frequency microwave devices. For LaFe0.85Zn0.15O3−δ, the short range movement of charge carriers dominates the relaxation process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Fang, Y. Cui, J. Alloys Compd. 432, 15–17 (2007)

    Article  Google Scholar 

  2. O.M. Hemeda, A. Tawfik, M.M. El-Shahawy, K.A. Darwish, Eur. Phys. J. Plus 132(1–11), 333 (2017)

    Article  Google Scholar 

  3. X. He, C. Chen, C. Li, H. Zeng, Z. Yi, Adv. Funct. Mater. 29(1–8), 1900918 (2019)

    Article  Google Scholar 

  4. L.M. Wang, O. Petracic, S. Mattauch, A. Koutsioumbas, X.K. Wei, M. Heggen, V. Leffler, S. Ehlert, T. Brückel, J. Phys. D: Appl. Phys. 52, 06531 (2019). https://doi.org/10.1088/1361-6463/aaf13e

    Article  Google Scholar 

  5. P. Hao, Z. Lin, P. Song, Z. Yang, Q. Wang, J. Mater. Sci.: Mater. Electron. 31, 6679–6689 (2020)

    Google Scholar 

  6. S.N. Tijare, M.V. Joshi, P.S. Padole, P.A. Mangrulkar, S. Rayalu, N.K. Labhsetwar, Int. J. Hydrogen Energy 37, 10451–10456 (2012)

    Article  Google Scholar 

  7. F.H. Taylor, J. Buckeridge, C.R.A. Catlow, Chem. Mater. 28, 8210–8220 (2016)

    Article  Google Scholar 

  8. A.A. Cristobal, P.M. Botta, P.G. Bercoff, J.M. Porto Lopez, Mater. Res. Bull. 44, 1036–1040 (2009)

    Article  Google Scholar 

  9. S. Tariq, S. Saad, M. Imran-Jamil, S.M. Sohail-Gilani, S.M. Ramay, A. Mahmood, Eur. Phys. J. Plus 133(1–10), 87 (2018)

    Article  Google Scholar 

  10. P. Ravindranathan, S. Komarneni, R. Roy, J. Mater. Sci. Lett. 12, 369–371 (1993)

    Article  Google Scholar 

  11. A.D. Jadhav, A.B. Gaikwad, V. Samuel, V. Ravi, Mater. Lett. 61, 2030–2032 (2007)

    Article  Google Scholar 

  12. M. Popa, J. Frantti, M. Kakihana, Solid State Ionics 154, 437–445 (2002)

    Article  Google Scholar 

  13. Y. Wang, J. Zhu, L. Zhang, X. Yang, L. Lu, X. Wang, Mater. Lett. 60, 1767–1770 (2006)

    Article  Google Scholar 

  14. W.J. Zheng, R.H. Liu, D.K. Peng, G.Y. Meng, Mater. Lett. 43, 19–22 (2000)

    Article  Google Scholar 

  15. E. Cao, Y. Qin, T. Cui, L. Sun, W. Hao, Y. Zhang, Ceram. Int. 43, 7922–7928 (2017)

    Article  Google Scholar 

  16. L.J. Berchmans, R. Sindhu, S. Angappan, C.O. Augustin, J. Mater. Process Technol. 207, 301–306 (2008)

    Article  Google Scholar 

  17. S. Acharya, P.K. Chakrabarti, Solid State Commun. 150, 1234–1237 (2010)

    Article  ADS  Google Scholar 

  18. C.K. Devi, S. Mallesh, M.J. Krishna, A.K. Das, A. Venimadhav, Phys. B 448, 304–311 (2014)

    Article  ADS  Google Scholar 

  19. M.A. Ahmed, A.A. Azab, E.H. El-Khawas, J. Mater. Sci. 26, 8765–8773 (2015)

    Google Scholar 

  20. T.T. Gao, X.N. Zhu, J. Chen, X.Q. Liu, X.M. Chen, J. Alloys Compd. 792, 665–672 (2019)

    Article  Google Scholar 

  21. L.M. Salah, M. Haroun, M.M. Rashad, J. Aust. Ceram. Soc. 54, 357–368 (2018)

    Article  Google Scholar 

  22. J. Sheikh, S.A. Acharya, U.P. Deshpande, Mater. Chem. Phys. 242, 122457 (2020). https://doi.org/10.1016/j.matchemphys.2019.122457

    Article  Google Scholar 

  23. R. Andoulsi-Fezei, N. Sdiri, K. Horchani-Naifer, M. Férid, J. Asian Ceram. Soc. 8, 94–105 (2020)

    Article  Google Scholar 

  24. A.P.B. Selvadurai, V. Pazhanivelu, C. Jagadeeshwaran, R. Murugaraj, I.P. Muthuselvam, F.C. Chou, J. Alloys Compd. 646, 924–931 (2015)

    Article  Google Scholar 

  25. R.K. Raj, V. Kurapati, T. Ramachandran, M. Muralidharan, R. Suriakarthick, M. Dhilip, F. Hamed, J. Mater. Sci.: Mater. Electron. 31, 7998–8014 (2020)

    Google Scholar 

  26. D. Triyono, I. Purnamasari, R. Almusawi Rafsanjani, Curr. Comput.-Aided Drug Des. 10(1–11), 399 (2020)

    Google Scholar 

  27. C. Sasikala, G. Suresh, N. Durairaj, I. Baskaran, B. Sathyaseelan, M. Kumar, K. Senthilnathan, E. Manikandan, J. Alloys Compd. 845(1–8), 155040 (2020)

    Article  Google Scholar 

  28. K. Mukhopadhyay, K.S. Mahapatra, P.K. Chakrabarti, Mater. Lett. 159, 9–11 (2015)

    Article  Google Scholar 

  29. S. Manzoor, S. Husain, J. Appl. Phys. 124(1–10), 065110 (2018)

    Article  ADS  Google Scholar 

  30. R. Andoulsi-Fezei, K. Horchani-Naifer, M. Férid, Ceram. Inter. 42, 1373–1378 (2016)

    Article  Google Scholar 

  31. R. Andoulsi, K. Horchani-Naifer, M. Férid, Cerâmica 58, 126–132 (2012)

    Article  Google Scholar 

  32. W. Hzez, A. Benali, H. Rahmouni, E. Dhahri, K. Khirouni, B.F.O. Costa, J. Phys. Chem. Solids 117, 1–12 (2018)

    Article  ADS  Google Scholar 

  33. K. Lily, K. Kumari, R.N.P. Choudhary, J. Alloys Compd. 453, 325–331 (2008)

    Article  Google Scholar 

  34. H. Rahmouni, B. Cherif, M. Smari, E. Dhahri, N. Moutia, K. Khirouni, Phys. B: Condens. Mater. 473, 1–6 (2015)

    Article  ADS  Google Scholar 

  35. R. Brahem, H. Rahmouni, N. Farhata, J. Dhahri, K. Khirouni, L.C. Costa, Ceram. Inter. 40, 9355–9360 (2014)

    Article  Google Scholar 

  36. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba-Boudjada, K. Khirouni, A. Cheikrouhou, Eur. Phys. J. Plus 135(1–3), 809 (2020)

    Article  Google Scholar 

  37. P. Dhak, D. Dhak, M. Das, K. Pramanik, P. Pramanik, Mater. Sci. Eng. B 164, 165–171 (2009)

    Article  Google Scholar 

  38. V.D. Nithya, R. Jacob Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R. Kalai Selvan, Mater. Res. Bull. 47, 1861–1868 (2012)

    Article  Google Scholar 

  39. M. Kumar, S. Shankar, S. Kumar, O.P. Thakur, A.K. Ghosh, Phys. Lett. A 381, 379–386 (2017)

    Article  Google Scholar 

  40. W.H.H. Woodward, Broadband Dielectric Spectroscopy: A Modern Analytical Technique, ACS Symposium Series (American Chemical Society, Washington, 2021)

    Book  Google Scholar 

  41. R.R. Raut, N.V. Ambhore, C.S. Ulhe, IJIRSET 7, 58–63 (2018)

    Google Scholar 

  42. A.K. Jonscher, Dielectric Relaxation in Solids, 2nd edn. (Dielectric Press, London, 1983)

    Google Scholar 

  43. A.K. Jonscher, J. Phys. D: Appl. Phys. 32, 57–70 (1999)

    Article  ADS  Google Scholar 

  44. D.K. Mahato, A. Dutta, T.P. Sinha, Phys. B 406, 2703–2708 (2011)

    Article  ADS  Google Scholar 

  45. R.M. Shelby, M.D. Levenson, S.H. Perlmutter, R.G. DeVoe, D.F. Walls, Phys. Rev. Lett. 57, 691–694 (1986)

    Article  ADS  Google Scholar 

  46. M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, M. Arif, Mod. Electron. Mater. 3, 110–116 (2017)

    Article  Google Scholar 

  47. V.J. Fratello, C.D. Brandle, J. Mater. Res. 9, 2554–2560 (1994)

    Article  ADS  Google Scholar 

  48. M.N. Rahman, Ceramic Processing and Sintering, 2nd edn. (CRC Press, Boca Raton, 2003)

    Google Scholar 

  49. K.D. Chandrasekhar, S. Mallesh, J.K. Murthy, A.K. Das, A. Venimadhav, Phys. B 448, 304–311 (2014)

    Article  ADS  Google Scholar 

  50. Q. Ke, X. Lou, Y. Wang, J. Wang, Phys. Rev. B 82(1–7), 024102 (2010)

    Article  ADS  Google Scholar 

  51. A.R. Makhdoom, M.J. Akhtar, R.T.A. Khan, M.A. Rafiq, M.M. Hsan, F. Sher, A.N. Fitch, Mater. Chem. Phys. 143, 256–262 (2013)

    Article  Google Scholar 

  52. R. Andoulsi-Fezei, N. Sdiri, K. Horchani-Naifer, M. Férid, Spectrochem. Acta A 205, 214–220 (2018)

    Article  ADS  Google Scholar 

  53. R. Moss, K.H. Hardtl, J. Appl. Phys. 80, 393–400 (1996)

    Article  ADS  Google Scholar 

  54. L. Ni, X.M. Chen, Appl. Phys. Lett. 91(1–3), 122905 (2007)

    Article  ADS  Google Scholar 

  55. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito, Nature 436, 1136–1138 (2005)

    Article  ADS  Google Scholar 

  56. M.M. Abdel Aziz, M.A. Afif, H.H. Labib, Acta Phys. Pol. A 98, 393–399 (2000)

    Article  ADS  Google Scholar 

  57. J.C. Giuntinin, J.V. Zanchetta, D. Jullien, R. Eholie, P. Houenou, J. Non-Cryst, Solids 45, 57–62 (1981)

    Google Scholar 

  58. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys. Compd. 653, 506–512 (2015)

    Article  Google Scholar 

  59. Y. Saad, M. Hidouri, I. Álvarez-Serrano, M.L. López, O. Toulemonde, A. Wattiaux, M.B. Amara, J. Phys. Chem. Solids 81, 40–49 (2015)

    Article  ADS  Google Scholar 

  60. J.C. Maxwell, Electricity and Magnetism, 3rd edn. (Oxford University Press, New York, 1973)

    Google Scholar 

  61. F. Amaral, L.C. Costa, M.A. Valente, J Non-Cryst. Solids 357, 775–781 (2011)

    Article  ADS  Google Scholar 

  62. A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 4, 3–26 (2000)

    Article  Google Scholar 

  63. C.C. Wang, C.M. Lei, G.J. Wang, J. Appl. Phys. 113(1–9), 094103 (2013)

    Article  ADS  Google Scholar 

  64. K.K. Bamzai, V. Gupta, P.N. Kotru, B.M. Wanklyn, Ferroelectrics 413, 328–341 (2011)

    Article  Google Scholar 

  65. A. Chaouchi, S. Kennour, Process. Appl. Ceram. 6, 201–207 (2012)

    Article  Google Scholar 

  66. K.A. Nath, K. Prasad, K.P. Chandra, A.R. Kulkarni, Bull. Mater. Sci. 36, 591–599 (2013)

    Article  Google Scholar 

  67. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850–3856 (1989)

    Article  ADS  Google Scholar 

  68. S.M. Selbach, J.R. Tolchard, A. Fossdal, T. Grande, J. Solid State Chem. 196, 249–254 (2012)

    Article  ADS  Google Scholar 

  69. R. Andoulsi, K. Horchani-Naifer, M. Férid, Ceram Int. 39, 6527–6531 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to the Ministry of Higher Education and Scientific Research of Tunisia for providing us the necessary equipment to hold this research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refka Andoulsi-Fezei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andoulsi-Fezei, R., Horchani-Naifer, K. & Férid, M. Study of the colossal dielectric response in LaFe1−xZnxO3−δ perovskites. Eur. Phys. J. Plus 136, 791 (2021). https://doi.org/10.1140/epjp/s13360-021-01776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01776-3

Navigation