Skip to main content
Log in

Evaluation of the effect of an asymmetric electric field on the electrohydrodynamic enhanced forced convection in a double-wall-heated channel by Q criterion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An investigation of the effect of an asymmetric electric field on the enhancement of heat transfer and the electrohydrodynamic (EHD)-induced flow strength in a double-wall-heated channel is numerically studied by the Q criterion. A set of case studies are carried out for a double-wall-heated channel model to analyze the influence of the key contributing EHD parameters; Reynolds number and the configuration of wires, on the Q criterion and the heat transfer characteristics as well. A descriptive factor of enhancement: the ratio of the mean Nusselt number resulted from electrohydrodynamic to the mean Nusselt number without electrohydrodynamic, is implemented to estimate the heat transfer enhancement capability. It is shown that the enhancement of heat transfer is sensitive to the wire configuration. Also, the results show that the heat transfer augmentation is more affected by the asymmetric electric field and the intensity of the Q criterion in the recirculation zones in the vicinity of wires than the symmetric electric field. Furthermore, the results indicate that the enhancement factor grows at lower Reynolds numbers. It has been seen that setting wire 1 closer to the walls results in better heat transfer enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(C_{p}\) :

Specific heat coefficient, \({\text{J/kg}}{\kern 1pt} {\text{K}}\)

\(C_{\varepsilon 1} , C_{\varepsilon 2} , C_{\mu }\) :

Turbulence model constants

\(D_{e}\) :

Diffusion coefficient of ions, \({\text{m}}^{2} {\text{/s}}\)

\(D_{H}\) :

Hydraulic diameter, \({\text{m}}\)

\(e\) :

Total energy, \({\text{J}}\)

\(\vec{E}\) :

Electric field strength vector, \({\text{V/s}}\)

\({\text{EHD}}\) :

Electrohydrodynamic

\(\overrightarrow {{F_{e} }}\) :

Electric body force, \({\text{N/m}}^{3}\)

\(h_{x}\) :

Local heat transfer coefficient, \({\text{W/m}}^{2} K\)

\(h_{1}\) :

Gap between the wire 1 and the bottom wall, \({\text{m}}\)

\(h_{2}\) :

Gap between the wire 2 and the bottom wall, \({\text{m}}\)

\(H\) :

Height of the channel, \({\text{m}}\)

\(i\) :

Index, i = 1, 2, 3 for x, y and z directions

\(I_{t}\) :

Turbulence intensity

\(\vec{j}\) :

Current density vector, \({\text{A/m}}^{2}\)

\(k\) :

Turbulence kinetic energy, \({\text{J}}\)

\(K\) :

Thermal conductivity, \({\text{W/m}}{\kern 1pt} {\text{K}}\)

\(l\) :

Distance between two wires, \({\text{m}}\).

\(L\) :

Length of the channel, \({\text{m}}\)

\(Nu\) :

Local Nusselt number

\(p\) :

Pressure, \({\text{Pa}}\)

\(Pr_{t}\) :

Turbulent Prandtl number

\(q^{\prime \prime}\) :

Heat flux, \({\text{W/m}}^{2}\)

\(Q\) :

Q criterion, \({\text{s}}^{ - 2}\)

\(r_{e}\) :

Wire radius, \({\text{m}}\)

\({\text{Re}}\) :

Reynolds number

\(S_{ij}\) :

Strain tensor, \({\text{s}}^{ - 1}\)

\(t\) :

Time, \({\text{s}}\)

\(T\) :

Temperature, \({\text{K}}\)

\(\vec{u}\) :

Velocity vector, \({\text{m/s}}\)

\(u_{i}\) :

Velocity component, \({\text{m/s}}\)

\(V\) :

Electric potential, \({\text{V}}\)

\(\beta\) :

ion mobility, \({\text{m}}^{2} {\text{/V}}.{\text{s}}\)

\(\varepsilon\) :

Turbulent dissipation rate, \({\text{W}}\)

\(\varepsilon_{s}\) :

Dielectric permittivity, \({\text{F/m}}\)

\(\mu\) :

Dynamic viscosity, \({\text{kg/m}}{\kern 1pt} {\text{s}}\)

\(\mu_{t}\) :

Turbulence dynamic viscosity, \({\text{kg/m}}{\kern 1pt} {\text{s}}\)

\(\nu\) :

Kinematic viscosity, \({\text{m}}^{2} {\text{/s}}\)

\(\rho\) :

Fluid density, \({\text{kg/m}}^{3}\)

\(\rho_{c}\) :

Charge density, \({\text{C/m}}^{3}\)

\(\sigma_{k}\) :

Prandtl number for kinetic energy

\(\sigma_{\varepsilon }\) :

Prandtl number for dissipation rate

\(\omega_{ij}\) :

Vorticity tensor, \({\text{s}}^{ - 1}\)

in:

Local value at inlet

m :

Mean

x :

Wall local value

0:

Zero voltage

References

  1. K. Adamiak, P. Atten, Simulation of corona discharge in point–plane configuration. J. Electrostat. 61(2), 85–98 (2004)

    Article  Google Scholar 

  2. K. Adamiak, Two-species modeling of electrohydrodynamic pump based on surface dielectric barrier discharge. J. Electrostat. 106, 103470 (2020)

  3. H. Moayedi, N. Amanifard, H.M. Deylami, Evaluation of using micropolar fluid approach for the EHD-enhanced forced convection through a rectangular channel using multiple electrode arrangements. Appl. Therm. Eng. 113857 (2019)

  4. L. Samaei, H.M. Deylam, N. Amanifard, H. Moayedi Numerical evaluation of using micropolar fluid model for EHD-induced natural convection heat transfer through a rectangular enclosure. J. Electrostat. 101, 103372 (2019)

  5. N. Zehtabiyan-Rezaie, M. Saffar-Avval, K. Adamiak Forced convection heat transfer enhancement using a coaxial wire-tube corona system. J. Electrostat. 103, 103415 (2020)

  6. H.M. Deylami, N. Amanifard, F. Dolati, R. Kouhikamali, K. Mostajiri, Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel. J. Electrostat. 71(4), 656–665 (2013)

    Article  Google Scholar 

  7. Z. Feng, Z. Long, K. Adamiak, Numerical simulation of electrohydrodynamic flow and vortex analysis in electrostatic precipitators. IEEE Trans. Dielectr. Electr. Insul. 25(2), 404–412 (2018)

    Article  Google Scholar 

  8. N. Kasayapanand, T. Kiatsiriroat, EHD enhanced heat transfer in wavy channel. Int. Commun. Heat Mass Transfer 32, 809–821 (2005)

    Article  Google Scholar 

  9. M. Molki, P. Damronglerd, Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts. Heat Transfer Eng. 27, 35–45 (2006)

    Article  ADS  Google Scholar 

  10. N. Kasayapanand, Numerical study of electrode bank enhanced heat transfer. Appl. Therm. Eng. 26, 1471–1480 (2006)

    Article  Google Scholar 

  11. N. Kasayapanand, T. Kiatsiriroat Optimized electrode arrangement in solar air heater. Renew. Energy 31, 439–455 (2006)

  12. S.O. Ahmedou, M. Havet, Effect of process parameters on the EHD airflow. J Electrostat 67, 222–227 (2009)

    Article  Google Scholar 

  13. H. Safarnia, M. Sheikholeslami, D.D. Ganji, Electrohydrodynamic nanofluid flow and forced convective heat transfer in a channel. Eur. Phys. J. Plus 131(4), 1–4 (2016)

    Article  Google Scholar 

  14. M. Peng, T.H. Wang, X.D. Wang, Effect of longitudinal electrode arrangement on EHD-induced heat transfer enhancement in a rectangular channel. Int. J. Heat Mass Transf. 29(93), 1072–1081 (2016)

    Article  Google Scholar 

  15. H. Moayedi, N. Amanifard, H.M. Deylami A simple correlation for predicting the material parameter in micropolar modeling of EHD-enhanced forced convection through a flat channel. J. Electrostat. 103, 103408 (2020)

  16. S.O. Ahmedou, M. Havet, Effect of process parameters on the EHD airflow. J. Electrostat. 67, 222–227 (2009)

    Article  Google Scholar 

  17. J. Zhang, F.C. Lai, Effect of emitting electrode number on the performance of EHD gas pump in a rectangular channel. J. Electrostat. 69, 486–493 (2011)

    Article  Google Scholar 

  18. D. Madadi, A.A. Orouji, New high-voltage and high-speed β-Ga 2 O 3 MESFET with amended electric field distribution by an insulator layer. Eur. Phys. J. Plus 135(7), 1–2 (2020)

    Article  Google Scholar 

  19. R. Salazar, C. Bayona-Roa, J.S. Solís-Chaves, Electrostatic field of angular-dependent surface electrodes. Eur. Phys. J. Plus 135(1), 93 (2020)

    Article  Google Scholar 

  20. S.S.N. Ayuttaya, C. Chaktranond, P. Rattanadecho, Numerical analysis of electric force influence on heat transfer in a channel flow (theory based on saturated porous medium approach). Int. J. Heat Mass Transfer 64, 361–374 (2013)

    Article  Google Scholar 

  21. S.S.N. Ayuttaya, C. Chaktranond, P. Rattanadecho, Numerical analysis of the influence of electrode position on fluid flow in 2-D rectangular duct flow. J. Mech. Sci. Technol. 27, 1957–1962 (2013)

    Article  Google Scholar 

  22. T.H. Wang, M. Peng, X.D. Wang, W.M. Yan, Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel. Int. J. Heat Mass Transf. 31(113), 373–383 (2017)

    Article  Google Scholar 

  23. M.C. Ke, J.C. Leong, F.C. Lai, Electrohydrodynamically enhanced forced convection in a horizontal channel by nonsymmetric electric field. J. Thermophys. Heat Transfer 34(4), 784–791 (2020)

    Article  Google Scholar 

  24. Y.N. Zhang, X.Y. Wang, C. Liu, Comparisons and analyses of vortex identification between Omega method and Q criterion. J. Hydrodyn. 31(2), 224–230 (2019)

    Article  ADS  Google Scholar 

  25. J.M. Zhan, Y.T.Li, W.H. Wai, W.Q. Hu Comparison between the Q criterion and Rortex in the application of an in-stream structure. Phys. Fluids 31(12), 121701 (2019).

  26. H. Moayedi, N. Amanifard, H.M. Deylami, F. Dolati, Numerical investigation of using micropolar fluid model for EHD flow through a smooth channel. J. Electrostat. 1(87), 51–63 (2017)

    Article  Google Scholar 

  27. D.B. Go, S.V. Garimella, T.S. Fisher Numerical simulation of microscale ionic wind for local cooling enhancement. In: Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006. 2006 May 30 (pp. 45–53). IEEE (2006).

  28. H. Moayedi, N. Amanifard Finding a low cost energy multi-DBD plasma actuator for natural heat transfer enhancement in a vertical duct. J. Electrostat. 108, 103520 (2020)

  29. N. Oussalah, Y. Zebboudj, Finite-element analysis of positive and negative corona discharge in wire-to-plane system. Eur. Phys. J. Appl. Phys. 34(3), 215–223 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesam Moayedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayedi, H. Evaluation of the effect of an asymmetric electric field on the electrohydrodynamic enhanced forced convection in a double-wall-heated channel by Q criterion. Eur. Phys. J. Plus 136, 787 (2021). https://doi.org/10.1140/epjp/s13360-021-01791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01791-4

Navigation