Skip to main content
Log in

Boundedness of partial difference transforms for heat semigroups generated by discrete Laplacian

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We analyze the convergence of the following type of series

$$\begin{aligned} T_N f(n)=\sum _{j=N_1}^{N_2} v_j\Big (e^{a_{j+1}{\varDelta }_d} f(n)-e^{a_{j}{\varDelta }_d} f(n)\Big ),\quad n\in {\mathbb {Z}}, \end{aligned}$$

where \(\{e^{t{\varDelta }_d} \}_{t>0}\) is the heat semigroup of the discrete Laplacian \({\varDelta }_d\), \(N=(N_1, N_2)\in {\mathbb {Z}}^2\) with \(N_1<N_2\), \(\{v_j\}_{j\in {\mathbb {Z}}}\) is a bounded real sequence and \(\{a_j\}_{j\in {\mathbb {Z}}}\) is an increasing real sequence. Our analysis will consist in the boundedness on \(\ell ^p({\mathbb {Z}}, \omega )\) of the operators \(T_N\) and its maximal operator \(\displaystyle T^*f(n)= \sup _N \left| T_N f(n)\right| \), where \(1\le p<\infty \) and \(\omega \) is a discrete Muckenhoupt weight. Moreover, we also get the alternative behavior of the maximal operator \(T^*\) on \(\ell ^\infty ({\mathbb {Z}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Almeida, V., Betancor, J., Rodríguez-Mesa, L.: Discrete Hardy spaces and heat semigroup associated with the discrete Laplacian. Mediterr. J. Math. 16(4), Article No. 91 (2019)

  2. Bernardis, A.L., Lorente, M., Martín-Reyes, F.J., Martínez, M.T., de la Torre, A., Torrea, J.L.: Differential transforms in weighted spaces. J. Fourier Anal. Appl. 12, 83–103 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chao, Z., Ma, T., Torrea, J.L.: Boundedness of differential transforms for one-sided fractional Poisson type operator sequence. J. Geom. Anal. 31, 67–99 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chao, Z., Torrea, J.L.: Boundedness of differential transforms for heat semigroups generated by Schrödinger operators. Can. J. Math. 73, 622–655 (2021)

    Article  Google Scholar 

  5. Ciaurri, O., Gillespie, T., Roncal, L., Torrea, J.L., Varona, J.L.: Harmonic analysis associated with a discrete Laplacian. J. Anal. Math. 132, 109–131 (2017)

    Article  MathSciNet  Google Scholar 

  6. Grünbaum, F.A.: The bispectral problem: an overview. In: Bustoz, J., Ismail, M.E., Suslov, S. (eds.) Special Functions 2000: Current Perspective and Future Directions, pp. 129–140. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  7. Grünbaum, F.A., Iliev, P.: Heat kernel expansions on the integers. Math. Phys. Anal. Geom. 5, 183–200 (2002)

    Article  MathSciNet  Google Scholar 

  8. Gunawan, H., Schwanke, C.: The Hardy–Littlewood maximal operator on discrete Morrey spaces. Mediterr. J. Math. 16(1), Article No. 24 (2019)

  9. Hunt, R., Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Am. Math. Soc. 176, 227–251 (1973)

    Article  MathSciNet  Google Scholar 

  10. Jones, R.L., Rosenblatt, J.: Differential and ergodic transforms. Math. Ann. 323, 525–546 (2002)

    Article  MathSciNet  Google Scholar 

  11. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

    MATH  Google Scholar 

  12. Pierce, L.B.: Discrete Analogues in Harmonic Analysis. Ph.D. thesis, Princeton University, Princeton (2009)

  13. Prudnikov, A.P., Brychkov, A.Y., Marichev, O.I.: Integrals and Series. Volume 1. Elementary Functions. Gordon and Breach Science Publishers, New York (1986)

    MATH  Google Scholar 

  14. Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62, 7–48 (1986)

    Article  MathSciNet  Google Scholar 

  15. Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis, I: \(\ell ^2\) estimates for singular Radon transforms. Am. J. Math. 121, 1291–1336 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Communicated by Markus Haase.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Grant No. 11971431), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18A010006) and the first Class Discipline of Zhejiang-A (Zhejiang Gongshang University-Statistics).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Zhang, C. Boundedness of partial difference transforms for heat semigroups generated by discrete Laplacian. Semigroup Forum 103, 622–640 (2021). https://doi.org/10.1007/s00233-021-10210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-021-10210-0

Keywords

Navigation