Skip to main content

Advertisement

Log in

Self-Supporting Design of NiS/CNTs Nanohybrid for Advanced Electrochemical Energy Storage Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, a novel NiS/CNTs nanohybrid with a higher specific capacity and cyclic performance was fabricated as an anodic material for supercapacitor applications. The NiS/CNTs nanohybrid was furnished on the three-dimensional nickel foam (NF) to prepare a novel electrode with a self-supporting design. The NiS/CNTs electrode, with its hybrid composition, larger surface area, self-supporting design and improved electrical conductivity, provides a higher gravimetric capacity of 732F/g@1Ag−1. Application studies have shown that NiS/CNTs electrodes not only have good gravimetric ability, but also have considerable cyclic performance and activity due to their hybrid composition and self-supporting design. More precisely, the NiS/CNTs@NF electrode lost only 4.9% of its gravimetric capacity after 3000 continuous galvanostatic discharge (GCD) cycles, indicating its exceptional cyclic performance. In addition, the manufactured hybrid electrode maintains a gravimetric capacity of approximately 84.5%, even if the applied current density is increased fivefold. The impedance results indicated that the electrochemical reaction between the NiS/CNTs and the electrolyte is more rapid and highly reversible. Based on the findings from the electrochemical study, the NiS/CNTs@NF electrode appears to be a promising candidate for practical applications in advanced energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Yang, J. Mao, H. Niu, Q. Wang, K. Zhu, K. Ye, et al. (2021). NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors. Chemical Engineering Journal. 406, 126713. https://doi.org/10.1016/j.cej.2020.126713.

    Article  CAS  Google Scholar 

  2. X. Liu, G. Sheng, M. Zhong, and X. Zhou (2018). Dispersed and size-selected WO3 nanoparticles in carbon aerogel for supercapacitor applications. Materials & Design. 141, 220–229. https://doi.org/10.1016/j.matdes.2017.12.038.

    Article  CAS  Google Scholar 

  3. Y. Gao, J. Zhang, X. Luo, Y. Wan, Z. Zhao, X. Han, et al. (2020). Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy. 72, 104666. https://doi.org/10.1016/j.nanoen.2020.104666.

    Article  CAS  Google Scholar 

  4. S. Wang, H. Liu, J. Hu, L. Jiang, W. Liu, S. Wang, et al. (2020). In Situ Synthesis of NiO@Ni Micro/nanostructures as Supercapacitor Electrodes Based on Femtosecond Laser Adjusted Electrochemical Anodization. Applied Surface Science. 541, 148216. https://doi.org/10.1016/j.apsusc.2020.148216.

    Article  CAS  Google Scholar 

  5. Y. Liu, X. Zhang, K. Matras-Postolek, and P. Yang (2021). Ni2P nanosheets modified N-doped hollow carbon spheres towards enhanced supercapacitor performance. Journal of Alloys and Compounds. 854, 157111. https://doi.org/10.1016/j.jallcom.2020.157111.

    Article  CAS  Google Scholar 

  6. H. Sabeeh, S. Zulfiqar, M. Aadil, M. Shahid, I. Shakir, M. A. Khan, et al. (2020). Flake-like MoS2 nano-architecture and its nanocomposite with reduced Graphene Oxide for hybrid supercapacitors applications. Ceramics International. 46 (13), 21064–21072. https://doi.org/10.1016/j.ceramint.2020.05.179.

    Article  CAS  Google Scholar 

  7. N. Ashraf, M. Aadil, S. Zulfiqar, H. Sabeeh, M. A. Khan, I. Shakir, et al. (2020). Wafer-like CoS architectures and their nanocomposites with polypyrrole for electrochemical energy storage applications. ChemistrySelect. 5 (27), 8129–8136.

    Article  CAS  Google Scholar 

  8. M. Aadil, S. Zulfiqar, H. Sabeeh, M. F. Warsi, M. Shahid, I. A. Alsafari, et al. (2020). Enhanced electrochemical energy storage properties of carbon coated Co3O4 nanoparticles-reduced graphene oxide ternary nano-hybrids. Ceramics International. 46 (11, Part A), 17836–17845. https://doi.org/10.1016/j.ceramint.2020.04.090.

    Article  CAS  Google Scholar 

  9. N. Shaheen, M. Aadil, S. Zulfiqar, H. Sabeeh, P. O. Agboola, M. F. Warsi, et al. (2020). Fabrication of different conductive matrix supported binary metal oxides for supercapacitors applications. Ceramics International. https://doi.org/10.1016/j.ceramint.2020.10.108.

    Article  Google Scholar 

  10. A. Ali, M. Aadil, A. Rasheed, I. Hameed, S. Ajmal, I. Shakir, et al. (2020). Honeycomb like architectures of the Mo doped ZnS@Ni for high-performance asymmetric supercapacitors applications. Synthetic Metals. 265, 116408. https://doi.org/10.1016/j.synthmet.2020.116408.

    Article  CAS  Google Scholar 

  11. S. Sahoo and J.-J. Shim (2018). Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes. Materials Letters. 210, 105–108.

    Article  Google Scholar 

  12. M. Aadil, S. Zulfiqar, P. O. Agboola, M. F. Aly Aboud, I. Shakir, and M. F. Warsi (2021). Fabrication of graphene supported binary nanohybrid with multiple approaches for electrochemical energy storage applications. Synthetic Metals. 272, 116645. https://doi.org/10.1016/j.synthmet.2020.116645.

    Article  CAS  Google Scholar 

  13. M. Aadil, A. Rahman, S. Zulfiqar, I. A. Alsafari, M. Shahid, I. Shakir, et al. (2021). Facile synthesis of binary metal substituted copper oxide as a solar light driven photocatalyst and antibacterial substitute. Advanced Powder Technology. 32 (3), 940–950.

    Article  CAS  Google Scholar 

  14. M. Aadil, S. Zulfiqar, M. Shahid, S. Haider, I. Shakir, and M. F. Warsi (2020). Binder free mesoporous Ag-doped Co3O4 nanosheets with outstanding cyclic stability and rate capability for advanced supercapacitor applications. Journal of Alloys and Compounds. 844, 156062.

    Article  CAS  Google Scholar 

  15. M. Aadil, S. Zulfiqar, M. Shahid, P. O. Agboola, S. Haider, M. F. Warsi, et al. (2021). Fabrication of rationally designed CNTs supported binary nanohybrid with multiple approaches to boost electrochemical performance. Journal of Electroanalytical Chemistry. 884, 115070. https://doi.org/10.1016/j.jelechem.2021.115070.

    Article  CAS  Google Scholar 

  16. M. Aadil, M. F. Warsi, P. O. Agboola, M. F. A. Aboud, and I. Shakir (2021). Direct decoration of Co3O4/r-GO nanocomposite on nickel foam for electrochemical energy storage applications. Ceramics International. 47 (7), 9008–9016.

    Article  CAS  Google Scholar 

  17. M. Aadil, G. Nazik, S. Zulfiqar, I. Shakir, M. F. Aly Aboud, P. O. Agboola, et al. (2021). Fabrication of nickel foam supported Cu-doped Co3O4 nanostructures for electrochemical energy storage applications. Ceramics International. 47 (7, Part A), 9225–9233. https://doi.org/10.1016/j.ceramint.2020.12.048.

    Article  CAS  Google Scholar 

  18. G. Li, M. Chen, Y. Ouyang, D. Yao, L. Lu, L. Wang, et al. (2019). Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors. Applied Surface Science. 469, 941–950. https://doi.org/10.1016/j.apsusc.2018.11.099.

    Article  CAS  Google Scholar 

  19. K. Zafar, M. Aadil, M. N. Shahi, H. Sabeeh, M. F. Nazar, M. Iqbal, et al. (2020). Physical, structural and dielectric parameters evaluation of new Mg1-x Cox NiyFe2-yO4 nano-ferrites synthesized via wet chemical approach. AAAFM Energy. 1 (1), 36–44.

    Article  Google Scholar 

  20. S.-Y. Kim, C. V. M. Gopi, A. E. Reddy, and H.-J. Kim (2018). Facile synthesis of a NiO/NiS hybrid and its use as an efficient electrode material for supercapacitor applications. New Journal of Chemistry. 42 (7), 5309–5313.

    Article  CAS  Google Scholar 

  21. H. Sabeeh, M. Aadil, S. Zulfiqar, A. Rasheed, N. F. Al-Khalli, P. O. Agboola, et al. (2021). Hydrothermal synthesis of CuS nanochips and their nanohybrids with CNTs for electrochemical energy storage applications. Ceramics International. 47 (10, Part A), 13613–13621.

    Article  CAS  Google Scholar 

  22. F. Cao, M. Gan, L. Ma, X. Li, F. Yan, M. Ye, et al. (2017). Hierarchical sheet-like Ni–Co layered double hydroxide derived from a MOF template for high-performance supercapacitors. Synthetic Metals. 234, 154–160. https://doi.org/10.1016/j.synthmet.2017.11.001.

    Article  CAS  Google Scholar 

  23. M. Aadil, W. Shaheen, M. F. Warsi, M. Shahid, M. A. Khan, Z. Ali, et al. (2016). Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. Journal of Alloys and Compounds. 689, 648–654. https://doi.org/10.1016/j.jallcom.2016.08.029.

    Article  CAS  Google Scholar 

  24. H. Xie, S. Tang, Z. Gong, S. Vongehr, F. Fang, M. Li, et al. (2014). 3D nitrogen-doped graphene/Co (OH) 2-nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Advances. 4 (106), 61753–61758.

    Article  CAS  Google Scholar 

  25. Gupta H, Chakrabarti S, Mothkuri S, Padya B, Rao T, Jain P. High performance supercapacitor based on 2D-MoS2 nanostructures. Materials Today: Proceedings. 2019.

  26. S. Jabeen, M. Aadil, J. Williams, M. S. Awan, J. Iqbal, S. Zulfiqar, et al. (2021). Synthesis of In2O3/GNPs nanocomposites with integrated approaches to tune the overall performance of the electrochemical devices. Ceramics International. https://doi.org/10.1016/j.ceramint.2021.03.205.

    Article  Google Scholar 

  27. M. Aadil, S. Zulfiqar, M. Shahid, P. O. Agboola, N. F. Al-Khalli, M. F. Warsi, et al. (2021). Fabrication of CNTs supported binary nanocomposite with multiple strategies to boost electrochemical activities. Electrochimica Acta383, 138332.

    Article  CAS  Google Scholar 

  28. J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, and W. Zheng (2014). Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy. 5, 74–81. https://doi.org/10.1016/j.nanoen.2014.02.006.

    Article  CAS  Google Scholar 

  29. S.-W. Chou and J.-Y. Lin (2013). Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. Journal of the Electrochemical Society. 160 (4), D178.

    Article  CAS  Google Scholar 

  30. Y. Li, K. Ye, K. Cheng, J. Yin, D. Cao, and G. Wang (2015). Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. Journal of Power Sources. 274, 943–950.

    Article  CAS  Google Scholar 

  31. L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, et al. (2015). Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochimica Acta. 182, 361–367.

    Article  CAS  Google Scholar 

  32. Nandhini S, Muralidharan G. Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors. AIP Conference Proceedings: AIP Publishing LLC; 2018. p. 140060.

  33. X. Li, J. Shen, N. Li, and M. Ye (2015). Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Materials Letters. 139, 81–85.

    Article  CAS  Google Scholar 

  34. H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, et al. (2014). Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H 2 production. Scientific Reports. 4, 3577.

    Article  Google Scholar 

  35. S. Yousaf, M. Aadil, S. Zulfiqar, M. F. Warsi, P. O. Agboola, M. F. Aly Aboud, et al. (2020). Hierarchically porous CuO microspheres and their r-GO based nanohybrids for electrochemical supercapacitors applications. Journal of Materials Research and Technology. 9 (6), 14158–14167.

    Article  CAS  Google Scholar 

  36. M. Aadil, S. Zulfiqar, M. F. Warsi, P. O. Agboola, I. Shakir, M. Shahid, et al. (2021). Mesoporous and macroporous Ag-doped Co3O4 nanosheets and their superior photo-catalytic properties under solar light irradiation. Ceramics International. 47 (7), 9806–9817.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors (Dr. Humera Sabeeh, Dr. Muhamamd Aadil and Dr. Muhammad Farooq Warsi) are thankful to the Islamia University of Bahawalpur (Pakistan) and Higher Education Commission (6276/Punjab/NRPU/R&D/HEC/2016) of Pakistan. Authors from King Saud University, sincerely appreciate the Deanship of Scientific Research, King Saud University Riyadh (Saudi Arabia) for their contribution through Research Group No: 1438-068. Dr. Sonia Zulfiqar is grateful to American University in Cairo (AUC) for financial support through STRC mini-grant and research project No. SSE-CHEM-S.Z.-FY19-FY20-FY21-RG (1–19)-2018-Oct-01-17-53-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farooq Warsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabeeh, H., Aadil, M., Zulfiqar, S. et al. Self-Supporting Design of NiS/CNTs Nanohybrid for Advanced Electrochemical Energy Storage Applications. J Clust Sci 33, 2113–2121 (2022). https://doi.org/10.1007/s10876-021-02138-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02138-w

Keywords

Navigation