Skip to main content
Log in

A Non-Equilibrium Nucleation Model to Calculate the Density of State and Its Application to the Heat Capacity of Stoichiometric UO2

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the molar specific heat capacity is theoretically predicted for stoichiometric UO2.00 in the temperature range from 0 K to 3000 K. The λ-phase transition at 2670 ± 30 K and its transformation heat is predicted. Furthermore, the occurrence of a small discontinuity corresponds to the rapid and simultaneous magnetic, electrical, and structural transition to occurs at 30.5 K and unit cell change at 30.8 K have been reported. Debye temperature assumed for UO2.00 is \({\Theta }_{D}\cong 900K\). The Gibbs–Thomson coefficient applied to calculate the density of state is derived from considering the strain in the interior of the crystal due to the free surface of the solid grain. A new relation between surface tension and surface energy during solid–liquid nucleation is established, allowing calculating Gibbs–Thomson in terms of surface tension or surface energy. Theoretical predictions are plotted against experimental scatter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thermophysical properties database of materials for light water reactor and heavy waters reactors (Iaea-tecdoc). International Atomic Energy Agency, Vienna (2006)

  2. S.G. Popov, J.J. Carbajo, V.K. Ivanov, G.L. Yoder. Thermophysical Properties of MOX and UO2 Fuels Including the Effects of Irradiation. Oak Ridge National Laboratory. US Department of Energy (1996) ORNL/TM-2000/351.

  3. J.J. Huntzicker, E.F. Westrum Jr., The magnetic transition, heat capacity and thermodynamic properties of uranium dioxide from 5 to 350 K. J. Chem. Thermodyn. 3, 61–76 (1971)

    Article  Google Scholar 

  4. F. Grønvold, N.J. Kveseth, J. Tichý, Thermodynamics of the UO2+x phase I. Heat capacities of UO2.017 and UO2.254 from 300 to 1000 K and electronic contributions. J. Chem. Thermodyn. 5, 665–679 (1970)

    Article  Google Scholar 

  5. C. Ronchi, M. Sheindlin, M. Musella, Thermal conductivity of uranium dioxide up to 2900 K from simultaneous measurement of the heat capacity and thermal diffusivity. J. Appl. Phys. 85, 776–789 (1999)

    Article  ADS  Google Scholar 

  6. J.K. Fink, M.C. Petri. Thermophysical properties of uranium dioxide. Argonne National Laboratory Report ANL/RE-97/2 (1997)

  7. W.M. Jones, J. Gordon, E.A. Long. The heat capacity of uranium, uranium trioxide, and uranium dioxide from 15K to 300K. J. Chem. Phys. 20, 695–699 (1952)

    Article  ADS  Google Scholar 

  8. D.J. Antonio, J.T. Weiss, K.S. Shanks, J.P.C. Ruff, M. Jaime, A. Saul, T. Swinburn, M. Solomon, K. Shrestha, B. Lavina, D. Koury, S.M. Gruner, D.A. Anderson, C.R. Stanek, T. Durakiewicz, J.L. Smith, Z. Islam, K. Gofryk, Piezomagnetic switching and complex phase equilibria in uranium dioxide. Commun. Mater. 2, 17 (2021)

    Article  Google Scholar 

  9. M. Jaime, A. Saul, M. Salamon, V.S. Zapf, N. Narrison, T. Durakiewicz, J.C. Lashley, D.A. Anderson, C.R. Stanek, J.L. Smith, K. Gofryk, Piezomagnetism and magnetoelastic memory in uranium dioxide. Nat. Commun. 8, 99 (2017)

    Article  ADS  Google Scholar 

  10. K. Gofryk, S. Du, C.R. Stanek, J.C. Lashley, X.-Y. Liu, R.K. Schulze, J.L. Smith, D.J. Safarik, D.D. Byler, K.J. McClellan, B.P. Uberuaga, B.L. Scott, D.A. Andersson, Anisotropic thermal conductivity in uranium dioxide. Nat. Commun. 5, 4551 (2014)

    Article  ADS  Google Scholar 

  11. I.L. Ferreira, J.A. de Castro, A. Garcia, Determination of heat capacity of pure metals, compounds and alloys by analytical and numerical methods. Thermochim. Acta 682, 178418 (2019)

    Article  Google Scholar 

  12. I.L. Ferreira, On the heat capacity of pure elements and phases. Mater. Res. 24, e20200529 (2021)

    Article  Google Scholar 

  13. I.L. Ferreira, J.A. Castro, A. Garcia, On the Determination of Molar Heat Capacity of Transition Elements: From the Absolute to the Melting Point in Book: Recent Advances on Numerical Simulation (INTECHOPEN, London, 2021). https://doi.org/10.5772/intechopen.96880

    Book  Google Scholar 

  14. M.E. Gurtin, A.I. Murdoch, Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  15. E.H. Kim, B.J. Lee, Size dependency of melting point of crystalline nano particles and nano wires: a thermodynamic modeling. Met. Mater. Int. 15, 531–537 (2009)

    Article  Google Scholar 

  16. N. Wu, X. Lu, R. An, X. Ji, Thermodynamic analysis and modification of Gibbs-Thomson equation for melting point depression of metal nanoparticles. Chin. J. Chem. Eng. 31, 198–205 (2021)

    Article  Google Scholar 

  17. I.L. Ferreira, A.L.S. Moreira, J. Aviz, T.A. Costa, O.F.L. Rocha, A.S. Barros, A. Garcia, On an expression for the growth of secondary dendrite arm spacing during non-equilibrium solidification of multicomponent alloys: validation against ternary aluminum-based alloys. J. Manuf. Process. 35, 634–650 (2018)

    Article  Google Scholar 

  18. M.V. Cante, J.E. Spinelli, N. Cheung, I.L. Ferreira, A. Garcia, Microstructural development in Al-Ni alloys directionally solidified under unsteady-state conditions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39A, 1712–1726 (2008)

    Article  ADS  Google Scholar 

  19. P.D. Jácome, D.J. Moutinho, L.G. Gomes, A. Garcia, A.F. Ferreira, I.L. Ferreira, The application of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of aluminum ternary alloys. Mater. Sci. Forum 730–732, 871–876 (2012)

    Article  Google Scholar 

  20. M. Rappaz, W.J. Boettinger, On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Mater. 47, 3205–3219 (1999)

    Article  ADS  Google Scholar 

  21. R. Shuttleworth, The surface tension in solids. Proc. Phys. Soc. 63A, 444–457 (1950)

    Article  ADS  Google Scholar 

  22. C. Herring, in The structure and Properties of Solid Surfaces. eds. R. Gomer, C.S. Smith (University of Chicago Press, Chicago, 1952), p. 5

    Google Scholar 

  23. W.W. Mullins, Metal Surfaces: Structure (Energetics and Kinetics. American Society for Metals, Ohio, 1962), p. 17

    Google Scholar 

  24. J.S. Vermaak, C.W. Mays, D. Juhlmann-Wilsdorf, On the surface stress and surface tensor: I. Theoretical considerations. Surf. Sci. 12, 128–133 (1968)

    Article  ADS  Google Scholar 

  25. P. Müller, A. Saul, F. Leroy, Simple views on surface stress and surface energy concepts. Nanosci. Nanotechnol. 5, 013002 (2014)

    Google Scholar 

  26. K. Morohoshi, M. Uchikoshi, M. Isshki, H. Fukuyama, Surface tension of liquid iron as functions of oxygen activity and temperature. ISIJ Int. 51, 1580–1586 (2011)

    Article  Google Scholar 

  27. Z. Jian, K. Kuribayashi, W. Jie, Solid-liquid interface energy of metals at melting point and undercooled state. Mater. Trans. 43, 721–726 (2002)

    Article  Google Scholar 

  28. G. Kaptay, On the solid/liquid interfacial energies of metals and alloys. J. Mater. Sci. 53, 3767–3784 (2018)

    Article  ADS  Google Scholar 

  29. C.J. Smithells, General Physical Properties, Metals Reference Book, 7th edn. (E.A, 1998)

    Google Scholar 

  30. J.J. Valencia, P. Quested, Thermophysical Properties. Casting. ASM Handb. ASM Int. 15, 468–481 (2008)

    Google Scholar 

  31. M.A. Bredig, in L’etude des Transformations Crystalline a Hautes Temperatures, Proceedings of a Conference held in Odeillo, France, 1971 (CNRS, Paris, 1972), p. 183

  32. M.T. Hutchings, High-temperature studies of UO2 and ThO2 using neutron scattering techniques. J. Chem. Soc. Faraday Trans. II 83, 1083–1103 (1987)

    Article  Google Scholar 

  33. J.P. Hiernauts, G.J. Hyland, C. Ronchi, Premelting transition in uranium dioxide, int. J. Thermophys. 14, 259–283 (1993)

    Article  ADS  Google Scholar 

  34. L. Leibowitz, J.K. Fink, O.D. Slagle, Phase transitions, creep, and fission gas behavior in actinide oxides. J. Nucl. Mater. 116, 324–325 (1983)

    Article  ADS  Google Scholar 

  35. C. Ronchi, G.J. Hyland, Analysis of recent measurements of the heat capacity of uranium dioxide. J. Alloys Compd. 213, 159–168 (1994)

    Article  ADS  Google Scholar 

  36. Y.N. Devyatko, V.V. Novikov, O.V. Khomyakov, D.A. Chulkin, A model of uranium dioxide thermal conductivity. Inorg. Mater. Appl. Res. 7, 70–81 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by FAPERJ (The Scientific Research Foundation of the State of Rio de Janeiro), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil - Finance Code 001) and CNPq (National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivaldo Leão Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.L. A Non-Equilibrium Nucleation Model to Calculate the Density of State and Its Application to the Heat Capacity of Stoichiometric UO2. Int J Thermophys 42, 148 (2021). https://doi.org/10.1007/s10765-021-02903-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02903-z

Keywords

Navigation